Spaces:
Running
Running
File size: 13,767 Bytes
fcde2f2 d5894b1 fcde2f2 d5894b1 4412065 d5894b1 fcde2f2 d5894b1 fcde2f2 1eb8a26 fcde2f2 d5894b1 fcde2f2 4412065 fcde2f2 d5894b1 fcde2f2 d5894b1 fcde2f2 d5894b1 fcde2f2 d5894b1 fcde2f2 d5894b1 fcde2f2 d5894b1 fcde2f2 7c7be00 cf2d24e 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 cf2d24e 7c7be00 cf2d24e 7c7be00 fcde2f2 cf2d24e fcde2f2 d5894b1 fcde2f2 cf2d24e fcde2f2 d5894b1 fcde2f2 1eb8a26 7c7be00 fcde2f2 1eb8a26 d5894b1 7c7be00 cf2d24e fcde2f2 1eb8a26 cf2d24e 7c7be00 cf2d24e 1eb8a26 cf2d24e 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 cf2d24e 1eb8a26 7c7be00 cf2d24e 1eb8a26 cf2d24e 7c7be00 1eb8a26 cf2d24e 7c7be00 cf2d24e 7c7be00 cf2d24e 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 1eb8a26 7c7be00 d5894b1 7c7be00 fcde2f2 1eb8a26 7c7be00 d5894b1 fcde2f2 d5894b1 7c7be00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os, json
import gradio as gr
import huggingface_hub, numpy as np, onnxruntime as rt, pandas as pd
from PIL import Image
from huggingface_hub import login
from translator import translate_texts
# ------------------------------------------------------------------
# 模型配置
# ------------------------------------------------------------------
MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
login(token=HF_TOKEN)
else:
print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
# ------------------------------------------------------------------
# Tagger 类
# ------------------------------------------------------------------
class Tagger:
def __init__(self):
self.hf_token = HF_TOKEN
self._load_model_and_labels()
def _load_model_and_labels(self):
label_path = huggingface_hub.hf_hub_download(
MODEL_REPO, LABEL_FILENAME, token=self.hf_token
)
model_path = huggingface_hub.hf_hub_download(
MODEL_REPO, MODEL_FILENAME, token=self.hf_token
)
tags_df = pd.read_csv(label_path)
self.tag_names = tags_df["name"].tolist()
self.categories = {
"rating": np.where(tags_df["category"] == 9)[0],
"general": np.where(tags_df["category"] == 0)[0],
"character": np.where(tags_df["category"] == 4)[0],
}
self.model = rt.InferenceSession(model_path)
self.input_size = self.model.get_inputs()[0].shape[1]
# ------------------------- preprocess -------------------------
def _preprocess(self, img: Image.Image) -> np.ndarray:
if img.mode != "RGB":
img = img.convert("RGB")
size = max(img.size)
canvas = Image.new("RGB", (size, size), (255, 255, 255))
canvas.paste(img, ((size - img.width)//2, (size - img.height)//2))
if size != self.input_size:
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
# --------------------------- predict --------------------------
def predict(self, img: Image.Image,
gen_th: float = 0.35,
char_th: float = 0.85):
inp_name = self.model.get_inputs()[0].name
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
res = {"ratings": {}, "general": {}, "characters": {}}
for idx in self.categories["rating"]:
res["ratings"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
for idx in self.categories["general"]:
if outputs[idx] > gen_th:
res["general"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
for idx in self.categories["character"]:
if outputs[idx] > char_th:
res["characters"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
res["general"] = dict(sorted(res["general"].items(),
key=lambda kv: kv[1],
reverse=True))
return res
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
custom_css = """
.label-container {
max-height: 300px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
border-radius: 5px;
background-color: #f9f9f9;
}
.tag-item {
display: flex;
justify-content: space-between;
align-items: center;
margin: 2px 0;
padding: 2px 5px;
border-radius: 3px;
background-color: #fff;
cursor: pointer;
}
.tag-item:hover {
background-color: #f0f0f0;
}
.tag-en {
font-weight: bold;
color: #333;
}
.tag-zh {
color: #666;
margin-left: 10px;
}
.tag-score {
color: #999;
font-size: 0.9em;
}
.btn-container {
margin-top: 20px;
}
.copy-btn {
margin-top: 10px;
padding: 5px 10px;
background-color: #f0f0f0;
border: 1px solid #ddd;
border-radius: 4px;
cursor: pointer;
display: inline-flex;
align-items: center;
font-size: 0.9em;
}
.copy-btn:hover {
background-color: #e0e0e0;
}
.copy-icon {
margin-right: 5px;
width: 16px;
height: 16px;
}
.copied-message {
display: none;
color: #4CAF50;
margin-left: 10px;
font-size: 0.9em;
}
.note-text {
color: #ff6b6b;
font-size: 0.9em;
padding: 5px;
border-left: 3px solid #ff6b6b;
margin-top: 15px;
background-color: #fff5f5;
}
"""
js_code = """
function setupCopyFunctions() {
// 为标签项设置点击复制
document.querySelectorAll('.tag-item').forEach(item => {
item.addEventListener('click', function() {
const tagText = this.querySelector('.tag-en').textContent;
navigator.clipboard.writeText(tagText).then(() => {
// 显示临时复制成功提示
const msg = document.createElement('span');
msg.textContent = '已复制!';
msg.style.color = '#4CAF50';
msg.style.marginLeft = '5px';
msg.style.fontSize = '0.8em';
this.appendChild(msg);
setTimeout(() => msg.remove(), 1000);
});
});
});
// 为汇总区域的复制按钮设置功能
document.getElementById('copy-tags-btn').addEventListener('click', function() {
const tagsText = document.getElementById('summary-text').value;
navigator.clipboard.writeText(tagsText).then(() => {
const copiedMsg = document.getElementById('copied-message');
copiedMsg.style.display = 'inline';
setTimeout(() => {
copiedMsg.style.display = 'none';
}, 2000);
});
});
}
// 在DOM加载完成或更新后调用设置函数
function onUiUpdate() {
setupCopyFunctions();
}
document.addEventListener('DOMContentLoaded', onUiUpdate);
"""
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=js_code) as demo:
gr.Markdown("# 🖼️ AI 图像标签分析器")
gr.Markdown("上传图片自动识别标签,并可一键翻译成中文")
gr.Markdown("<div class='note-text'>⚠️ 注意:角色识别仅支持推测2024年2月以前的角色</div>", elem_id="character-notice")
with gr.Row():
with gr.Column(scale=1):
img_in = gr.Image(type="pil", label="上传图片")
with gr.Accordion("⚙️ 高级设置", open=False):
gen_slider = gr.Slider(0, 1, 0.35,
label="通用标签阈值", info="越高→标签更少更准")
char_slider = gr.Slider(0, 1, 0.85,
label="角色标签阈值", info="推荐保持较高阈值")
show_zh = gr.Checkbox(True, label="显示中文翻译")
gr.Markdown("### 汇总设置")
with gr.Row():
sum_general = gr.Checkbox(True, label="通用标签")
sum_char = gr.Checkbox(True, label="角色标签")
sum_rating = gr.Checkbox(False, label="评分标签")
sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="分隔符")
btn = gr.Button("开始分析", variant="primary", elem_classes=["btn-container"])
processing_info = gr.Markdown("", visible=False)
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("🏷️ 通用标签"):
out_general = gr.HTML(label="General Tags")
with gr.TabItem("👤 角色标签"):
out_char = gr.HTML(label="Character Tags")
with gr.TabItem("⭐ 评分标签"):
out_rating = gr.HTML(label="Rating Tags")
gr.Markdown("### 标签汇总")
with gr.Row():
out_summary = gr.Textbox(label="标签汇总",
placeholder="选择需要汇总的标签类别...",
lines=3,
elem_id="summary-text")
# 添加复制按钮的HTML
copy_btn_html = gr.HTML("""
<div style="display: flex; align-items: center;">
<button id="copy-tags-btn" class="copy-btn">
<svg class="copy-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<rect x="9" y="9" width="13" height="13" rx="2" ry="2"></rect>
<path d="M5 15H4a2 2 0 01-2-2V4a2 2 0 012-2h9a2 2 0 012 2v1"></path>
</svg>
复制标签
</button>
<span id="copied-message" class="copied-message">已复制!</span>
</div>
""")
# ----------------- 处理回调 -----------------
def format_tags_html(tags_dict, translations, show_translation=True):
"""格式化标签为HTML格式,添加点击复制功能"""
if not tags_dict:
return "<p>暂无标签</p>"
html = '<div class="label-container">'
for i, (tag, score) in enumerate(tags_dict.items()):
# 添加可点击复制的标签项
html += f'<div class="tag-item" title="点击复制标签">'
html += f'<div><span class="tag-en">{tag}</span>'
if show_translation and i < len(translations):
html += f'<span class="tag-zh">({translations[i]})</span>'
html += '</div>'
html += f'<span class="tag-score">{score:.3f}</span>'
html += '</div>'
html += '</div>'
return html
def process(img, g_th, c_th, show_zh, sum_gen, sum_char, sum_rat, sep_type):
# 开始处理,返回更新
yield (
gr.update(interactive=False, value="处理中..."),
gr.update(visible=True, value="🔄 正在分析图像..."),
"", "", "", ""
)
try:
tagger = Tagger()
res = tagger.predict(img, g_th, c_th)
# 收集所有需要翻译的标签
all_tags = []
tag_categories = {
"general": list(res["general"].keys()),
"characters": list(res["characters"].keys()),
"ratings": list(res["ratings"].keys())
}
if show_zh:
for tags in tag_categories.values():
all_tags.extend(tags)
# 批量翻译
if all_tags:
translations = translate_texts(all_tags, src_lang="auto", tgt_lang="zh")
else:
translations = []
else:
translations = []
# 分配翻译结果
translations_dict = {}
offset = 0
for category, tags in tag_categories.items():
if show_zh and tags:
translations_dict[category] = translations[offset:offset+len(tags)]
offset += len(tags)
else:
translations_dict[category] = []
# 生成HTML输出
general_html = format_tags_html(res["general"], translations_dict["general"], show_zh)
char_html = format_tags_html(res["characters"], translations_dict["characters"], show_zh)
rating_html = format_tags_html(res["ratings"], translations_dict["ratings"], show_zh)
# 生成汇总文本 - 修改为仅显示英文标签,无注释
summary_parts = []
separators = {"逗号": ", ", "换行": "\n", "空格": " "}
separator = separators[sep_type]
all_tags = []
if sum_gen and res["general"]:
all_tags.extend(list(res["general"].keys()))
if sum_char and res["characters"]:
all_tags.extend(list(res["characters"].keys()))
if sum_rat and res["ratings"]:
all_tags.extend(list(res["ratings"].keys()))
summary_text = separator.join(all_tags) if all_tags else "请选择要汇总的标签类别"
# 完成处理,返回最终结果
yield (
gr.update(interactive=True, value="开始分析"),
gr.update(visible=False),
general_html,
char_html,
rating_html,
summary_text
)
except Exception as e:
# 出错时的处理
yield (
gr.update(interactive=True, value="开始分析"),
gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
"", "", "", ""
)
# 绑定事件
btn.click(
process,
inputs=[img_in, gen_slider, char_slider, show_zh, sum_general, sum_char, sum_rating, sum_sep],
outputs=[btn, processing_info, out_general, out_char, out_rating, out_summary],
show_progress=True
)
# ------------------------------------------------------------------
# 启动
# ------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |