IbrahimHasani's picture
Update app.py
5186ead
raw
history blame
3.68 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
from decord import VideoReader, cpu, gpu
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print (device)
# Load model and processor once and move them to the GPU
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
model.eval()
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def read_video_decord(file_path, indices):
# Use GPU for video decoding if available
vr_ctx = cpu(0)
vr = VideoReader(file_path, num_threads=1, ctx=vr_ctx)
video = vr.get_batch(indices).asnumpy()
return video
def concatenate_frames(frames, clip_len):
layout = { 32: (4, 8) }
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=len(VideoReader(uploaded_video)))
video = read_video_decord(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
# Convert list of numpy.ndarrays to a single numpy.ndarray
video_array = np.array(video)
inputs = processor(
text=activities_list,
videos=video_array,
return_tensors="pt",
padding=True,
)
# Move inputs to GPU
inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i].cpu())
logit = float(logits_per_video[0][i].cpu())
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.components.Video(label="Upload a video file"),
gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
],
outputs=[
gr.components.Image(type="pil", label="Sampled Frames"),
gr.components.Textbox(type="text", label="Probabilities"),
gr.components.Textbox(type="text", label="Raw Scores"),
gr.components.Textbox(type="text", label="Top Prediction")
],
live=False
)
iface.launch()