#!/usr/bin/env python3 import os import argparse from huggingface_hub import hf_hub_download, snapshot_download from private_gpt.paths import models_path, models_cache_path from private_gpt.settings.settings import settings resume_download = True if __name__ == '__main__': parser = argparse.ArgumentParser(prog='Setup: Download models from huggingface') parser.add_argument('--resume', default=True, action=argparse.BooleanOptionalAction, help='Enable/Disable resume_download options to restart the download progress interrupted') args = parser.parse_args() resume_download = args.resume os.makedirs(models_path, exist_ok=True) embedding_path = models_path / "embedding" print(f"Downloading embedding {settings().local.embedding_hf_model_name}") snapshot_download( repo_id=settings().local.embedding_hf_model_name, cache_dir=models_cache_path, local_dir=embedding_path, ) print("Embedding model downloaded!") print("Downloading models for local execution...") # Download LLM and create a symlink to the model file hf_hub_download( repo_id=settings().local.llm_hf_repo_id, filename=settings().local.llm_hf_model_file, cache_dir=models_cache_path, local_dir=models_path, resume_download=resume_download, ) print("LLM model downloaded!") print("Setup done")