import abc import itertools import logging import multiprocessing import multiprocessing.pool import os import threading from pathlib import Path from typing import Any from llama_index import ( Document, ServiceContext, StorageContext, VectorStoreIndex, load_index_from_storage, ) from llama_index.data_structs import IndexDict from llama_index.indices.base import BaseIndex from llama_index.ingestion import run_transformations from private_gpt.components.ingest.ingest_helper import IngestionHelper from private_gpt.paths import local_data_path from private_gpt.settings.settings import Settings logger = logging.getLogger(__name__) class BaseIngestComponent(abc.ABC): def __init__( self, storage_context: StorageContext, service_context: ServiceContext, *args: Any, **kwargs: Any, ) -> None: logger.debug("Initializing base ingest component type=%s", type(self).__name__) self.storage_context = storage_context self.service_context = service_context @abc.abstractmethod def ingest(self, file_name: str, file_data: Path) -> list[Document]: pass @abc.abstractmethod def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]: pass @abc.abstractmethod def delete(self, doc_id: str) -> None: pass class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC): def __init__( self, storage_context: StorageContext, service_context: ServiceContext, *args: Any, **kwargs: Any, ) -> None: super().__init__(storage_context, service_context, *args, **kwargs) self.show_progress = True self._index_thread_lock = ( threading.Lock() ) # Thread lock! Not Multiprocessing lock self._index = self._initialize_index() def _initialize_index(self) -> BaseIndex[IndexDict]: """Initialize the index from the storage context.""" try: # Load the index with store_nodes_override=True to be able to delete them index = load_index_from_storage( storage_context=self.storage_context, service_context=self.service_context, store_nodes_override=True, # Force store nodes in index and document stores show_progress=self.show_progress, ) except ValueError: # There are no index in the storage context, creating a new one logger.info("Creating a new vector store index") index = VectorStoreIndex.from_documents( [], storage_context=self.storage_context, service_context=self.service_context, store_nodes_override=True, # Force store nodes in index and document stores show_progress=self.show_progress, ) index.storage_context.persist(persist_dir=local_data_path) return index def _save_index(self) -> None: self._index.storage_context.persist(persist_dir=local_data_path) def delete(self, doc_id: str) -> None: with self._index_thread_lock: # Delete the document from the index self._index.delete_ref_doc(doc_id, delete_from_docstore=True) # Save the index self._save_index() class SimpleIngestComponent(BaseIngestComponentWithIndex): def __init__( self, storage_context: StorageContext, service_context: ServiceContext, *args: Any, **kwargs: Any, ) -> None: super().__init__(storage_context, service_context, *args, **kwargs) def ingest(self, file_name: str, file_data: Path) -> list[Document]: logger.info("Ingesting file_name=%s", file_name) documents = IngestionHelper.transform_file_into_documents(file_name, file_data) logger.info( "Transformed file=%s into count=%s documents", file_name, len(documents) ) logger.debug("Saving the documents in the index and doc store") return self._save_docs(documents) def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]: saved_documents = [] for file_name, file_data in files: documents = IngestionHelper.transform_file_into_documents( file_name, file_data ) saved_documents.extend(self._save_docs(documents)) return saved_documents def _save_docs(self, documents: list[Document]) -> list[Document]: logger.debug("Transforming count=%s documents into nodes", len(documents)) with self._index_thread_lock: for document in documents: self._index.insert(document, show_progress=True) logger.debug("Persisting the index and nodes") # persist the index and nodes self._save_index() logger.debug("Persisted the index and nodes") return documents class BatchIngestComponent(BaseIngestComponentWithIndex): """Parallelize the file reading and parsing on multiple CPU core. This also makes the embeddings to be computed in batches (on GPU or CPU). """ def __init__( self, storage_context: StorageContext, service_context: ServiceContext, count_workers: int, *args: Any, **kwargs: Any, ) -> None: super().__init__(storage_context, service_context, *args, **kwargs) # Make an efficient use of the CPU and GPU, the embedding # must be in the transformations assert ( len(self.service_context.transformations) >= 2 ), "Embeddings must be in the transformations" assert count_workers > 0, "count_workers must be > 0" self.count_workers = count_workers self._file_to_documents_work_pool = multiprocessing.Pool( processes=self.count_workers ) def ingest(self, file_name: str, file_data: Path) -> list[Document]: logger.info("Ingesting file_name=%s", file_name) documents = IngestionHelper.transform_file_into_documents(file_name, file_data) logger.info( "Transformed file=%s into count=%s documents", file_name, len(documents) ) logger.debug("Saving the documents in the index and doc store") return self._save_docs(documents) def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]: documents = list( itertools.chain.from_iterable( self._file_to_documents_work_pool.starmap( IngestionHelper.transform_file_into_documents, files ) ) ) logger.info( "Transformed count=%s files into count=%s documents", len(files), len(documents), ) return self._save_docs(documents) def _save_docs(self, documents: list[Document]) -> list[Document]: logger.debug("Transforming count=%s documents into nodes", len(documents)) nodes = run_transformations( documents, # type: ignore[arg-type] self.service_context.transformations, show_progress=self.show_progress, ) # Locking the index to avoid concurrent writes with self._index_thread_lock: logger.info("Inserting count=%s nodes in the index", len(nodes)) self._index.insert_nodes(nodes, show_progress=True) for document in documents: self._index.docstore.set_document_hash( document.get_doc_id(), document.hash ) logger.debug("Persisting the index and nodes") # persist the index and nodes self._save_index() logger.debug("Persisted the index and nodes") return documents class ParallelizedIngestComponent(BaseIngestComponentWithIndex): """Parallelize the file ingestion (file reading, embeddings, and index insertion). This use the CPU and GPU in parallel (both running at the same time), and reduce the memory pressure by not loading all the files in memory at the same time. """ def __init__( self, storage_context: StorageContext, service_context: ServiceContext, count_workers: int, *args: Any, **kwargs: Any, ) -> None: super().__init__(storage_context, service_context, *args, **kwargs) # To make an efficient use of the CPU and GPU, the embeddings # must be in the transformations (to be computed in batches) assert ( len(self.service_context.transformations) >= 2 ), "Embeddings must be in the transformations" assert count_workers > 0, "count_workers must be > 0" self.count_workers = count_workers # We are doing our own multiprocessing # To do not collide with the multiprocessing of huggingface, we disable it os.environ["TOKENIZERS_PARALLELISM"] = "false" self._ingest_work_pool = multiprocessing.pool.ThreadPool( processes=self.count_workers ) self._file_to_documents_work_pool = multiprocessing.Pool( processes=self.count_workers ) def ingest(self, file_name: str, file_data: Path) -> list[Document]: logger.info("Ingesting file_name=%s", file_name) # Running in a single (1) process to release the current # thread, and take a dedicated CPU core for computation documents = self._file_to_documents_work_pool.apply( IngestionHelper.transform_file_into_documents, (file_name, file_data) ) logger.info( "Transformed file=%s into count=%s documents", file_name, len(documents) ) logger.debug("Saving the documents in the index and doc store") return self._save_docs(documents) def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]: # Lightweight threads, used for parallelize the # underlying IO calls made in the ingestion documents = list( itertools.chain.from_iterable( self._ingest_work_pool.starmap(self.ingest, files) ) ) return documents def _save_docs(self, documents: list[Document]) -> list[Document]: logger.debug("Transforming count=%s documents into nodes", len(documents)) nodes = run_transformations( documents, # type: ignore[arg-type] self.service_context.transformations, show_progress=self.show_progress, ) # Locking the index to avoid concurrent writes with self._index_thread_lock: logger.info("Inserting count=%s nodes in the index", len(nodes)) self._index.insert_nodes(nodes, show_progress=True) for document in documents: self._index.docstore.set_document_hash( document.get_doc_id(), document.hash ) logger.debug("Persisting the index and nodes") # persist the index and nodes self._save_index() logger.debug("Persisted the index and nodes") return documents def __del__(self) -> None: # We need to do the appropriate cleanup of the multiprocessing pools # when the object is deleted. Using root logger to avoid # the logger to be deleted before the pool logging.debug("Closing the ingest work pool") self._ingest_work_pool.close() self._ingest_work_pool.join() self._ingest_work_pool.terminate() logging.debug("Closing the file to documents work pool") self._file_to_documents_work_pool.close() self._file_to_documents_work_pool.join() self._file_to_documents_work_pool.terminate() def get_ingestion_component( storage_context: StorageContext, service_context: ServiceContext, settings: Settings, ) -> BaseIngestComponent: """Get the ingestion component for the given configuration.""" ingest_mode = settings.embedding.ingest_mode if ingest_mode == "batch": return BatchIngestComponent( storage_context, service_context, settings.embedding.count_workers ) elif ingest_mode == "parallel": return ParallelizedIngestComponent( storage_context, service_context, settings.embedding.count_workers ) else: return SimpleIngestComponent(storage_context, service_context)