import logging import tempfile from pathlib import Path from typing import BinaryIO, List from injector import inject, singleton from llama_index import ( ServiceContext, StorageContext, ) from llama_index.node_parser import SentenceWindowNodeParser from private_gpt.components.embedding.embedding_component import EmbeddingComponent from private_gpt.components.ingest.ingest_component import get_ingestion_component from private_gpt.components.llm.llm_component import LLMComponent from private_gpt.components.node_store.node_store_component import NodeStoreComponent from private_gpt.components.vector_store.vector_store_component import ( VectorStoreComponent, ) from private_gpt.server.ingest.model import IngestedDoc from private_gpt.settings.settings import settings logger = logging.getLogger(__name__) @singleton class IngestService: @inject def __init__( self, llm_component: LLMComponent, vector_store_component: VectorStoreComponent, embedding_component: EmbeddingComponent, node_store_component: NodeStoreComponent, ) -> None: self.llm_service = llm_component self.storage_context = StorageContext.from_defaults( vector_store=vector_store_component.vector_store, docstore=node_store_component.doc_store, index_store=node_store_component.index_store, ) node_parser = SentenceWindowNodeParser.from_defaults() self.ingest_service_context = ServiceContext.from_defaults( llm=self.llm_service.llm, embed_model=embedding_component.embedding_model, node_parser=node_parser, # Embeddings done early in the pipeline of node transformations, right # after the node parsing transformations=[node_parser, embedding_component.embedding_model], ) self.ingest_component = get_ingestion_component( self.storage_context, self.ingest_service_context, settings=settings() ) def ingest(self, file_name: str, file_data: Path) -> list[IngestedDoc]: logger.info("Ingesting file_name=%s", file_name) documents = self.ingest_component.ingest(file_name, file_data) return [IngestedDoc.from_document(document) for document in documents] def ingest_bin_data( self, file_name: str, raw_file_data: BinaryIO ) -> list[IngestedDoc]: logger.debug("Ingesting binary data with file_name=%s", file_name) file_data = raw_file_data.read() logger.debug("Got file data of size=%s to ingest", len(file_data)) # llama-index mainly supports reading from files, so # we have to create a tmp file to read for it to work # delete=False to avoid a Windows 11 permission error. with tempfile.NamedTemporaryFile(delete=False) as tmp: try: path_to_tmp = Path(tmp.name) if isinstance(file_data, bytes): path_to_tmp.write_bytes(file_data) else: path_to_tmp.write_text(str(file_data)) return self.ingest(file_name, path_to_tmp) finally: tmp.close() path_to_tmp.unlink() def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]: logger.info("Ingesting file_names=%s", [f[0] for f in files]) documents = self.ingest_component.bulk_ingest(files) return [IngestedDoc.from_document(document) for document in documents] def list_ingested(self) -> list[IngestedDoc]: ingested_docs = [] try: docstore = self.storage_context.docstore ingested_docs_ids: set[str] = set() for node in docstore.docs.values(): if node.ref_doc_id is not None: ingested_docs_ids.add(node.ref_doc_id) for doc_id in ingested_docs_ids: ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id) doc_metadata = None if ref_doc_info is not None and ref_doc_info.metadata is not None: doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata) ingested_docs.append( IngestedDoc( object="ingest.document", doc_id=doc_id, doc_metadata=doc_metadata, ) ) except ValueError: logger.warning("Got an exception when getting list of docs", exc_info=True) pass logger.debug("Found count=%s ingested documents", len(ingested_docs)) return ingested_docs def delete(self, doc_id: str) -> None: """Delete an ingested document. :raises ValueError: if the document does not exist """ logger.info( "Deleting the ingested document=%s in the doc and index store", doc_id ) self.ingest_component.delete(doc_id) def list_ingested_filenames(self) -> List[str]: """Lists the filenames of ingested documents.""" ingested_documents = self.list_ingested() unique_filenames = set(doc.doc_metadata.get("file_name", "") for doc in ingested_documents) return list(unique_filenames)