|
from fastapi import APIRouter, Depends, Request |
|
from llama_index.llms import ChatMessage, MessageRole |
|
from pydantic import BaseModel |
|
from starlette.responses import StreamingResponse |
|
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter |
|
from private_gpt.open_ai.openai_models import ( |
|
OpenAICompletion, |
|
OpenAIMessage, |
|
to_openai_response, |
|
to_openai_sse_stream, |
|
) |
|
from private_gpt.server.chat.chat_service import ChatService |
|
|
|
from private_gpt.server.utils.authentication import get_current_user |
|
chat_router = APIRouter(prefix="/v1", dependencies=[Depends(get_current_user)]) |
|
|
|
|
|
class ChatBody(BaseModel): |
|
messages: list[OpenAIMessage] |
|
use_context: bool = False |
|
context_filter: ContextFilter | None = None |
|
include_sources: bool = True |
|
stream: bool = False |
|
|
|
model_config = { |
|
"json_schema_extra": { |
|
"examples": [ |
|
{ |
|
"messages": [ |
|
{ |
|
"role": "system", |
|
"content": "You are a rapper. Always answer with a rap.", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": "How do you fry an egg?", |
|
}, |
|
], |
|
"stream": False, |
|
"use_context": True, |
|
"include_sources": True, |
|
"context_filter": { |
|
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"] |
|
}, |
|
} |
|
] |
|
} |
|
} |
|
|
|
|
|
@chat_router.post( |
|
"/chat/completions", |
|
response_model=None, |
|
responses={200: {"model": OpenAICompletion}}, |
|
tags=["Contextual Completions"], |
|
) |
|
def chat_completion( |
|
request: Request, body: ChatBody |
|
) -> OpenAICompletion | StreamingResponse: |
|
"""Given a list of messages comprising a conversation, return a response. |
|
|
|
Optionally include an initial `role: system` message to influence the way |
|
the LLM answers. |
|
|
|
If `use_context` is set to `true`, the model will use context coming |
|
from the ingested documents to create the response. The documents being used can |
|
be filtered using the `context_filter` and passing the document IDs to be used. |
|
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want |
|
all ingested documents to be used, remove `context_filter` altogether. |
|
|
|
When using `'include_sources': true`, the API will return the source Chunks used |
|
to create the response, which come from the context provided. |
|
|
|
When using `'stream': true`, the API will return data chunks following [OpenAI's |
|
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming): |
|
``` |
|
{"id":"12345","object":"completion.chunk","created":1694268190, |
|
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"}, |
|
"finish_reason":null}]} |
|
``` |
|
""" |
|
service = request.state.injector.get(ChatService) |
|
all_messages = [ |
|
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages |
|
] |
|
if body.stream: |
|
completion_gen = service.stream_chat( |
|
messages=all_messages, |
|
use_context=body.use_context, |
|
context_filter=body.context_filter, |
|
) |
|
return StreamingResponse( |
|
to_openai_sse_stream( |
|
completion_gen.response, |
|
completion_gen.sources if body.include_sources else None, |
|
), |
|
media_type="text/event-stream", |
|
) |
|
else: |
|
completion = service.chat( |
|
messages=all_messages, |
|
use_context=body.use_context, |
|
context_filter=body.context_filter, |
|
) |
|
return to_openai_response( |
|
completion.response, completion.sources if body.include_sources else None |
|
) |
|
|