|
|
|
import os |
|
import argparse |
|
|
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
|
|
from private_gpt.paths import models_path, models_cache_path |
|
from private_gpt.settings.settings import settings |
|
|
|
resume_download = True |
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(prog='Setup: Download models from huggingface') |
|
parser.add_argument('--resume', default=True, action=argparse.BooleanOptionalAction, help='Enable/Disable resume_download options to restart the download progress interrupted') |
|
args = parser.parse_args() |
|
resume_download = args.resume |
|
|
|
os.makedirs(models_path, exist_ok=True) |
|
embedding_path = models_path / "embedding" |
|
|
|
print(f"Downloading embedding {settings().local.embedding_hf_model_name}") |
|
snapshot_download( |
|
repo_id=settings().local.embedding_hf_model_name, |
|
cache_dir=models_cache_path, |
|
local_dir=embedding_path, |
|
) |
|
print("Embedding model downloaded!") |
|
print("Downloading models for local execution...") |
|
|
|
|
|
hf_hub_download( |
|
repo_id=settings().local.llm_hf_repo_id, |
|
filename=settings().local.llm_hf_model_file, |
|
cache_dir=models_cache_path, |
|
local_dir=models_path, |
|
resume_download=resume_download, |
|
) |
|
|
|
print("LLM model downloaded!") |
|
print("Setup done") |
|
|