|
"""FastAPI app creation, logger configuration and main API routes.""" |
|
import logging |
|
from typing import Any |
|
|
|
|
|
from fastapi import Depends, FastAPI, Request, status, HTTPException |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.openapi.utils import get_openapi |
|
from injector import Injector |
|
from fastapi import APIRouter |
|
|
|
|
|
from private_gpt.paths import docs_path |
|
from private_gpt.server.chat.chat_router import chat_router |
|
from private_gpt.server.chunks.chunks_router import chunks_router |
|
from private_gpt.server.completions.completions_router import completions_router |
|
from private_gpt.server.embeddings.embeddings_router import embeddings_router |
|
from private_gpt.server.health.health_router import health_router |
|
from private_gpt.server.ingest.ingest_router import ingest_router |
|
from private_gpt.server.utils import authentication |
|
from private_gpt.settings.settings import Settings |
|
from private_gpt.components.llm.llm_component import LLMComponent |
|
|
|
from typing import Annotated |
|
from sqlalchemy.orm import Session |
|
from private_gpt.server.utils.authentication import get_current_user |
|
|
|
from fastapi import Depends, HTTPException, status |
|
from fastapi.security import OAuth2AuthorizationCodeBearer |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def create_app(root_injector: Injector) -> FastAPI: |
|
|
|
|
|
with open(docs_path / "description.md") as description_file: |
|
description = description_file.read() |
|
|
|
tags_metadata = [ |
|
{ |
|
"name": "Ingestion", |
|
"description": "High-level APIs covering document ingestion -internally " |
|
"managing document parsing, splitting," |
|
"metadata extraction, embedding generation and storage- and ingested " |
|
"documents CRUD." |
|
"Each ingested document is identified by an ID that can be used to filter the " |
|
"context" |
|
"used in *Contextual Completions* and *Context Chunks* APIs.", |
|
}, |
|
{ |
|
"name": "Contextual Completions", |
|
"description": "High-level APIs covering contextual Chat and Completions. They " |
|
"follow OpenAI's format, extending it to " |
|
"allow using the context coming from ingested documents to create the " |
|
"response. Internally" |
|
"manage context retrieval, prompt engineering and the response generation.", |
|
}, |
|
{ |
|
"name": "Context Chunks", |
|
"description": "Low-level API that given a query return relevant chunks of " |
|
"text coming from the ingested" |
|
"documents.", |
|
}, |
|
{ |
|
"name": "Embeddings", |
|
"description": "Low-level API to obtain the vector representation of a given " |
|
"text, using an Embeddings model." |
|
"Follows OpenAI's embeddings API format.", |
|
}, |
|
{ |
|
"name": "Health", |
|
"description": "Simple health API to make sure the server is up and running.", |
|
}, |
|
] |
|
|
|
def get_app(): |
|
return app |
|
|
|
|
|
async def bind_injector_to_request(request: Request) -> None: |
|
request.state.injector = root_injector |
|
|
|
app = FastAPI(dependencies=[Depends(bind_injector_to_request)]) |
|
model_router = APIRouter(prefix ='/v1',dependencies=[Depends(get_current_user)]) |
|
|
|
|
|
models_data = [ |
|
{"id": 1, "name": "gpt-3.5-turbo", "access": ["user", "admin"]}, |
|
{"id": 2, "name": "gpt-4", "access": ["admin"]}, |
|
{"id": 3, "name": "mistral-7B", "access": ["user", "admin"]}, |
|
|
|
] |
|
|
|
@model_router.post("/switch_model") |
|
async def switch_model( |
|
new_model: str, current_user: dict = Depends(get_current_user) |
|
): |
|
|
|
if "user" not in current_user.get("role", []): |
|
raise HTTPException( |
|
status_code=status.HTTP_403_FORBIDDEN, |
|
detail="You are not authorized to use this API.", |
|
) |
|
|
|
|
|
model_info = next((m for m in models_data if m["name"] == new_model), None) |
|
if not model_info or current_user.get("role") not in model_info["access"]: |
|
raise HTTPException( |
|
status_code=status.HTTP_403_FORBIDDEN, |
|
detail="You are not authorized to access this model.", |
|
) |
|
|
|
|
|
llm_component = root_injector.get(LLMComponent) |
|
llm_component.switch_model(new_model, settings=settings) |
|
|
|
|
|
|
|
return {"message": f"Model switched to {new_model}"} |
|
|
|
|
|
|
|
model_list_router = APIRouter(prefix="/v1", dependencies=[Depends(get_current_user)]) |
|
|
|
@model_list_router.get("/models_list", response_model=list[dict]) |
|
async def model_list(current_user: dict = Depends(get_current_user)): |
|
""" |
|
Get a list of models with their details. |
|
""" |
|
return models_data |
|
|
|
def custom_openapi() -> dict[str, Any]: |
|
if app.openapi_schema: |
|
return app.openapi_schema |
|
openapi_schema = get_openapi( |
|
title="Invenxion-Chatbot", |
|
description=description, |
|
version="0.1.0", |
|
summary="This is a production-ready AI project that allows you to " |
|
"ask questions to your documents using the power of Large Language " |
|
"Models (LLMs), even in scenarios without Internet connection. " |
|
"100% private, no data leaves your execution environment at any point.", |
|
license_info={ |
|
"name": "Apache 2.0", |
|
"url": "https://www.apache.org/licenses/LICENSE-2.0.html", |
|
}, |
|
routes=app.routes, |
|
tags=tags_metadata, |
|
) |
|
openapi_schema["info"]["x-logo"] = { |
|
"url": "https://lh3.googleusercontent.com/drive-viewer" |
|
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj" |
|
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560" |
|
} |
|
|
|
app.openapi_schema = openapi_schema |
|
return app.openapi_schema |
|
|
|
app.openapi = custom_openapi |
|
|
|
|
|
@app.get("/v1/me", status_code=status.HTTP_200_OK) |
|
async def user(current_user: dict = Depends(get_current_user)): |
|
if current_user is None: |
|
raise HTTPException(status_code=401, detail="Authentication Failed") |
|
return {"User": current_user} |
|
|
|
|
|
app.include_router(authentication.router) |
|
|
|
app.include_router(completions_router) |
|
app.include_router(chat_router) |
|
app.include_router(chunks_router) |
|
app.include_router(ingest_router) |
|
app.include_router(embeddings_router) |
|
app.include_router(health_router) |
|
app.include_router(model_router) |
|
app.include_router(model_list_router) |
|
|
|
settings = root_injector.get(Settings) |
|
if settings.server.cors.enabled: |
|
logger.debug("Setting up CORS middleware") |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_credentials=settings.server.cors.allow_credentials, |
|
allow_origins=settings.server.cors.allow_origins, |
|
allow_origin_regex=settings.server.cors.allow_origin_regex, |
|
allow_methods=settings.server.cors.allow_methods, |
|
allow_headers=settings.server.cors.allow_headers, |
|
) |
|
|
|
if settings.ui.enabled: |
|
logger.debug("Importing the UI module") |
|
from private_gpt.ui.ui import PrivateGptUi |
|
|
|
ui = root_injector.get(PrivateGptUi) |
|
ui.mount_in_app(app, settings.ui.path) |
|
|
|
return app |