Spaces:
Sleeping
Sleeping
"""FastAPI app creation, logger configuration and main API routes.""" | |
import logging | |
from typing import Any | |
from fastapi import Depends, FastAPI, Request, status, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.openapi.utils import get_openapi | |
from injector import Injector | |
from fastapi import APIRouter | |
#from fastapi import JSONResponse | |
from private_gpt.paths import docs_path | |
from private_gpt.server.chat.chat_router import chat_router | |
from private_gpt.server.chunks.chunks_router import chunks_router | |
from private_gpt.server.completions.completions_router import completions_router | |
from private_gpt.server.embeddings.embeddings_router import embeddings_router | |
from private_gpt.server.health.health_router import health_router | |
from private_gpt.server.ingest.ingest_router import ingest_router | |
from private_gpt.server.utils import authentication | |
from private_gpt.settings.settings import Settings | |
from private_gpt.components.llm.llm_component import LLMComponent | |
#databse for user authentication integration | |
#from private_gpt.server.utils import models | |
#from private_gpt.server.utils.database import engine, SessionLocal | |
from typing import Annotated | |
from sqlalchemy.orm import Session | |
from private_gpt.server.utils.authentication import get_current_user | |
from fastapi import Depends, HTTPException, status | |
from fastapi.security import OAuth2AuthorizationCodeBearer | |
logger = logging.getLogger(__name__) | |
def create_app(root_injector: Injector) -> FastAPI: | |
# Start the API | |
with open(docs_path / "description.md") as description_file: | |
description = description_file.read() | |
tags_metadata = [ | |
{ | |
"name": "Ingestion", | |
"description": "High-level APIs covering document ingestion -internally " | |
"managing document parsing, splitting," | |
"metadata extraction, embedding generation and storage- and ingested " | |
"documents CRUD." | |
"Each ingested document is identified by an ID that can be used to filter the " | |
"context" | |
"used in *Contextual Completions* and *Context Chunks* APIs.", | |
}, | |
{ | |
"name": "Contextual Completions", | |
"description": "High-level APIs covering contextual Chat and Completions. They " | |
"follow OpenAI's format, extending it to " | |
"allow using the context coming from ingested documents to create the " | |
"response. Internally" | |
"manage context retrieval, prompt engineering and the response generation.", | |
}, | |
{ | |
"name": "Context Chunks", | |
"description": "Low-level API that given a query return relevant chunks of " | |
"text coming from the ingested" | |
"documents.", | |
}, | |
{ | |
"name": "Embeddings", | |
"description": "Low-level API to obtain the vector representation of a given " | |
"text, using an Embeddings model." | |
"Follows OpenAI's embeddings API format.", | |
}, | |
{ | |
"name": "Health", | |
"description": "Simple health API to make sure the server is up and running.", | |
}, | |
] | |
async def bind_injector_to_request(request: Request) -> None: | |
request.state.injector = root_injector | |
app = FastAPI(dependencies=[Depends(bind_injector_to_request)]) | |
model_router = APIRouter(prefix ='/v1',dependencies=[Depends(get_current_user)]) | |
async def switch_model( | |
new_model: str, current_user: dict = Depends(get_current_user) | |
): | |
# Check if the user has the "admin" role | |
if "admin" not in current_user.get("role", []): | |
raise HTTPException( | |
status_code=status.HTTP_403_FORBIDDEN, | |
detail="You are not an admin and cannot use this API.", | |
) | |
#logic to switch the LLM model based on the user's request | |
llm_component = root_injector.get(LLMComponent) | |
llm_component.switch_model(new_model, settings=settings) | |
return {"message": f"Model switched to {new_model}"} | |
# Define a new APIRouter for the model_list | |
model_list_router = APIRouter(prefix="/v1", dependencies=[Depends(get_current_user)]) | |
async def model_list(current_user: dict = Depends(get_current_user)): | |
""" | |
Get a list of models with their details. | |
""" | |
# In this example, hardcoding some sample model data | |
models_data = [ | |
{"id": 1, "name": "gpt-3.5-turbo", "access": ["user", "admin"]}, | |
{"id": 2, "name": "gpt-4", "access": ["admin"]}, | |
# Add more models as needed | |
] | |
return models_data | |
# @model_router.post("/switch_model") | |
# async def switch_model(new_model: str): | |
# # Implement logic to switch the LLM model based on the user's request | |
# # Example: Change the LLM model in LLMComponent based on the new_model parameter | |
# llm_component = root_injector.get(LLMComponent) | |
# llm_component.switch_model(new_model, settings=settings) | |
# return {"message": f"Model switched to {new_model}"} | |
def custom_openapi() -> dict[str, Any]: | |
if app.openapi_schema: | |
return app.openapi_schema | |
openapi_schema = get_openapi( | |
title="Invenxion-Chatbot", | |
description=description, | |
version="0.1.0", | |
summary="This is a production-ready AI project that allows you to " | |
"ask questions to your documents using the power of Large Language " | |
"Models (LLMs), even in scenarios without Internet connection. " | |
"100% private, no data leaves your execution environment at any point.", | |
license_info={ | |
"name": "Apache 2.0", | |
"url": "https://www.apache.org/licenses/LICENSE-2.0.html", | |
}, | |
routes=app.routes, | |
tags=tags_metadata, | |
) | |
openapi_schema["info"]["x-logo"] = { | |
"url": "https://lh3.googleusercontent.com/drive-viewer" | |
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj" | |
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560" | |
} | |
app.openapi_schema = openapi_schema | |
return app.openapi_schema | |
app.openapi = custom_openapi # type: ignore[method-assign] | |
#models.Base.metadata.create_all(bind=engine) | |
# def get_db(): | |
# db = SessionLocal() | |
# try: | |
# yield db | |
# finally: | |
# db.close() | |
#db_dependency = Annotated[Session, Depends(get_db)] | |
#user_dependency = Annotated[dict, Depends(get_current_user)] | |
async def user(current_user: dict = Depends(get_current_user)): | |
if current_user is None: | |
raise HTTPException(status_code=401, detail="Authentication Failed") | |
return {"User": current_user} | |
app.include_router(authentication.router) | |
app.include_router(completions_router) | |
app.include_router(chat_router) | |
app.include_router(chunks_router) | |
app.include_router(ingest_router) | |
app.include_router(embeddings_router) | |
app.include_router(health_router) | |
app.include_router(model_router) | |
app.include_router(model_list_router) | |
settings = root_injector.get(Settings) | |
if settings.server.cors.enabled: | |
logger.debug("Setting up CORS middleware") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_credentials=settings.server.cors.allow_credentials, | |
allow_origins=settings.server.cors.allow_origins, | |
allow_origin_regex=settings.server.cors.allow_origin_regex, | |
allow_methods=settings.server.cors.allow_methods, | |
allow_headers=settings.server.cors.allow_headers, | |
) | |
if settings.ui.enabled: | |
logger.debug("Importing the UI module") | |
from private_gpt.ui.ui import PrivateGptUi | |
ui = root_injector.get(PrivateGptUi) | |
ui.mount_in_app(app, settings.ui.path) | |
return app | |