Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| """FastAPI app creation, logger configuration and main API routes.""" | |
| import logging | |
| from typing import Any | |
| from fastapi import Depends, FastAPI, Request, status, HTTPException | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.openapi.utils import get_openapi | |
| from injector import Injector | |
| from fastapi import APIRouter | |
| #from fastapi import JSONResponse | |
| from private_gpt.paths import docs_path | |
| from private_gpt.server.chat.chat_router import chat_router | |
| from private_gpt.server.chunks.chunks_router import chunks_router | |
| from private_gpt.server.completions.completions_router import completions_router | |
| from private_gpt.server.embeddings.embeddings_router import embeddings_router | |
| from private_gpt.server.health.health_router import health_router | |
| from private_gpt.server.ingest.ingest_router import ingest_router | |
| from private_gpt.server.utils import authentication | |
| from private_gpt.settings.settings import Settings | |
| from private_gpt.components.llm.llm_component import LLMComponent | |
| #databse for user authentication integration | |
| #from private_gpt.server.utils import models | |
| #from private_gpt.server.utils.database import engine, SessionLocal | |
| from typing import Annotated | |
| from sqlalchemy.orm import Session | |
| from private_gpt.server.utils.authentication import get_current_user | |
| from fastapi import Depends, HTTPException, status | |
| from fastapi.security import OAuth2AuthorizationCodeBearer | |
| logger = logging.getLogger(__name__) | |
| def create_app(root_injector: Injector) -> FastAPI: | |
| # Start the API | |
| with open(docs_path / "description.md") as description_file: | |
| description = description_file.read() | |
| tags_metadata = [ | |
| { | |
| "name": "Ingestion", | |
| "description": "High-level APIs covering document ingestion -internally " | |
| "managing document parsing, splitting," | |
| "metadata extraction, embedding generation and storage- and ingested " | |
| "documents CRUD." | |
| "Each ingested document is identified by an ID that can be used to filter the " | |
| "context" | |
| "used in *Contextual Completions* and *Context Chunks* APIs.", | |
| }, | |
| { | |
| "name": "Contextual Completions", | |
| "description": "High-level APIs covering contextual Chat and Completions. They " | |
| "follow OpenAI's format, extending it to " | |
| "allow using the context coming from ingested documents to create the " | |
| "response. Internally" | |
| "manage context retrieval, prompt engineering and the response generation.", | |
| }, | |
| { | |
| "name": "Context Chunks", | |
| "description": "Low-level API that given a query return relevant chunks of " | |
| "text coming from the ingested" | |
| "documents.", | |
| }, | |
| { | |
| "name": "Embeddings", | |
| "description": "Low-level API to obtain the vector representation of a given " | |
| "text, using an Embeddings model." | |
| "Follows OpenAI's embeddings API format.", | |
| }, | |
| { | |
| "name": "Health", | |
| "description": "Simple health API to make sure the server is up and running.", | |
| }, | |
| ] | |
| async def bind_injector_to_request(request: Request) -> None: | |
| request.state.injector = root_injector | |
| app = FastAPI(dependencies=[Depends(bind_injector_to_request)]) | |
| model_router = APIRouter(prefix ='/v1',dependencies=[Depends(get_current_user)]) | |
| async def switch_model( | |
| new_model: str, current_user: dict = Depends(get_current_user) | |
| ): | |
| # Check if the user has the "admin" role | |
| if "admin" not in current_user.get("role", []): | |
| raise HTTPException( | |
| status_code=status.HTTP_403_FORBIDDEN, | |
| detail="You are not an admin and cannot use this API.", | |
| ) | |
| #logic to switch the LLM model based on the user's request | |
| llm_component = root_injector.get(LLMComponent) | |
| llm_component.switch_model(new_model, settings=settings) | |
| return {"message": f"Model switched to {new_model}"} | |
| # Define a new APIRouter for the model_list | |
| model_list_router = APIRouter(prefix="/v1", dependencies=[Depends(get_current_user)]) | |
| async def model_list(current_user: dict = Depends(get_current_user)): | |
| """ | |
| Get a list of models with their details. | |
| """ | |
| # In this example, hardcoding some sample model data | |
| models_data = [ | |
| {"id": 1, "name": "gpt-3.5-turbo", "access": ["user", "admin"]}, | |
| {"id": 2, "name": "gpt-4", "access": ["admin"]}, | |
| # Add more models as needed | |
| ] | |
| return models_data | |
| # @model_router.post("/switch_model") | |
| # async def switch_model(new_model: str): | |
| # # Implement logic to switch the LLM model based on the user's request | |
| # # Example: Change the LLM model in LLMComponent based on the new_model parameter | |
| # llm_component = root_injector.get(LLMComponent) | |
| # llm_component.switch_model(new_model, settings=settings) | |
| # return {"message": f"Model switched to {new_model}"} | |
| def custom_openapi() -> dict[str, Any]: | |
| if app.openapi_schema: | |
| return app.openapi_schema | |
| openapi_schema = get_openapi( | |
| title="Invenxion-Chatbot", | |
| description=description, | |
| version="0.1.0", | |
| summary="This is a production-ready AI project that allows you to " | |
| "ask questions to your documents using the power of Large Language " | |
| "Models (LLMs), even in scenarios without Internet connection. " | |
| "100% private, no data leaves your execution environment at any point.", | |
| license_info={ | |
| "name": "Apache 2.0", | |
| "url": "https://www.apache.org/licenses/LICENSE-2.0.html", | |
| }, | |
| routes=app.routes, | |
| tags=tags_metadata, | |
| ) | |
| openapi_schema["info"]["x-logo"] = { | |
| "url": "https://lh3.googleusercontent.com/drive-viewer" | |
| "/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj" | |
| "E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560" | |
| } | |
| app.openapi_schema = openapi_schema | |
| return app.openapi_schema | |
| app.openapi = custom_openapi # type: ignore[method-assign] | |
| #models.Base.metadata.create_all(bind=engine) | |
| # def get_db(): | |
| # db = SessionLocal() | |
| # try: | |
| # yield db | |
| # finally: | |
| # db.close() | |
| #db_dependency = Annotated[Session, Depends(get_db)] | |
| #user_dependency = Annotated[dict, Depends(get_current_user)] | |
| async def user(current_user: dict = Depends(get_current_user)): | |
| if current_user is None: | |
| raise HTTPException(status_code=401, detail="Authentication Failed") | |
| return {"User": current_user} | |
| app.include_router(authentication.router) | |
| app.include_router(completions_router) | |
| app.include_router(chat_router) | |
| app.include_router(chunks_router) | |
| app.include_router(ingest_router) | |
| app.include_router(embeddings_router) | |
| app.include_router(health_router) | |
| app.include_router(model_router) | |
| app.include_router(model_list_router) | |
| settings = root_injector.get(Settings) | |
| if settings.server.cors.enabled: | |
| logger.debug("Setting up CORS middleware") | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_credentials=settings.server.cors.allow_credentials, | |
| allow_origins=settings.server.cors.allow_origins, | |
| allow_origin_regex=settings.server.cors.allow_origin_regex, | |
| allow_methods=settings.server.cors.allow_methods, | |
| allow_headers=settings.server.cors.allow_headers, | |
| ) | |
| if settings.ui.enabled: | |
| logger.debug("Importing the UI module") | |
| from private_gpt.ui.ui import PrivateGptUi | |
| ui = root_injector.get(PrivateGptUi) | |
| ui.mount_in_app(app, settings.ui.path) | |
| return app | |