Spaces:
Sleeping
Sleeping
import logging | |
from injector import inject, singleton | |
from llama_index import MockEmbedding | |
from llama_index.embeddings.base import BaseEmbedding | |
from private_gpt.paths import models_cache_path | |
from private_gpt.settings.settings import Settings | |
import os | |
logger = logging.getLogger(__name__) | |
class EmbeddingComponent: | |
embedding_model: BaseEmbedding | |
def __init__(self, settings: Settings) -> None: | |
embedding_mode = settings.embedding.mode | |
logger.info("Initializing the embedding model in mode=%s", embedding_mode) | |
match embedding_mode: | |
case "local": | |
from llama_index.embeddings import HuggingFaceEmbedding | |
self.embedding_model = HuggingFaceEmbedding( | |
model_name=settings.local.embedding_hf_model_name, | |
cache_folder=str(models_cache_path), | |
) | |
case "sagemaker": | |
from private_gpt.components.embedding.custom.sagemaker import ( | |
SagemakerEmbedding, | |
) | |
self.embedding_model = SagemakerEmbedding( | |
endpoint_name=settings.sagemaker.embedding_endpoint_name, | |
) | |
case "openai": | |
from llama_index import OpenAIEmbedding | |
openai_settings = os.environ.get("OPENAI_API_KEY") | |
self.embedding_model = OpenAIEmbedding(api_key=openai_settings) | |
case "mock": | |
# Not a random number, is the dimensionality used by | |
# the default embedding model | |
self.embedding_model = MockEmbedding(384) | |