Spaces:
Sleeping
Sleeping
File size: 9,646 Bytes
bf6d237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# mypy: ignore-errors
from __future__ import annotations
import io
import json
import logging
from typing import TYPE_CHECKING, Any
import boto3 # type: ignore
from llama_index.bridge.pydantic import Field
from llama_index.llms import (
CompletionResponse,
CustomLLM,
LLMMetadata,
)
from llama_index.llms.base import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.llms.generic_utils import (
completion_response_to_chat_response,
stream_completion_response_to_chat_response,
)
from llama_index.llms.llama_utils import (
completion_to_prompt as generic_completion_to_prompt,
)
from llama_index.llms.llama_utils import (
messages_to_prompt as generic_messages_to_prompt,
)
if TYPE_CHECKING:
from collections.abc import Sequence
from llama_index.callbacks import CallbackManager
from llama_index.llms import (
ChatMessage,
ChatResponse,
ChatResponseGen,
CompletionResponseGen,
)
logger = logging.getLogger(__name__)
class LineIterator:
r"""A helper class for parsing the byte stream input from TGI container.
The output of the model will be in the following format:
```
b'data:{"token": {"text": " a"}}\n\n'
b'data:{"token": {"text": " challenging"}}\n\n'
b'data:{"token": {"text": " problem"
b'}}'
...
```
While usually each PayloadPart event from the event stream will contain a byte array
with a full json, this is not guaranteed and some of the json objects may be split
across PayloadPart events. For example:
```
{'PayloadPart': {'Bytes': b'{"outputs": '}}
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
```
This class accounts for this by concatenating bytes written via the 'write' function
and then exposing a method which will return lines (ending with a '\n' character)
within the buffer via the 'scan_lines' function. It maintains the position of the
last read position to ensure that previous bytes are not exposed again. It will
also save any pending lines that doe not end with a '\n' to make sure truncations
are concatinated
"""
def __init__(self, stream: Any) -> None:
"""Line iterator initializer."""
self.byte_iterator = iter(stream)
self.buffer = io.BytesIO()
self.read_pos = 0
def __iter__(self) -> Any:
"""Self iterator."""
return self
def __next__(self) -> Any:
"""Next element from iterator."""
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord("\n"):
self.read_pos += len(line)
return line[:-1]
try:
chunk = next(self.byte_iterator)
except StopIteration:
if self.read_pos < self.buffer.getbuffer().nbytes:
continue
raise
if "PayloadPart" not in chunk:
logger.warning("Unknown event type=%s", chunk)
continue
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk["PayloadPart"]["Bytes"])
class SagemakerLLM(CustomLLM):
"""Sagemaker Inference Endpoint models.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
"""
endpoint_name: str = Field(description="")
temperature: float = Field(description="The temperature to use for sampling.")
max_new_tokens: int = Field(description="The maximum number of tokens to generate.")
context_window: int = Field(
description="The maximum number of context tokens for the model."
)
messages_to_prompt: Any = Field(
description="The function to convert messages to a prompt.", exclude=True
)
completion_to_prompt: Any = Field(
description="The function to convert a completion to a prompt.", exclude=True
)
generate_kwargs: dict[str, Any] = Field(
default_factory=dict, description="Kwargs used for generation."
)
model_kwargs: dict[str, Any] = Field(
default_factory=dict, description="Kwargs used for model initialization."
)
verbose: bool = Field(description="Whether to print verbose output.")
_boto_client: Any = boto3.client(
"sagemaker-runtime",
) # TODO make it an optional field
def __init__(
self,
endpoint_name: str | None = "",
temperature: float = 0.1,
max_new_tokens: int = 512, # to review defaults
context_window: int = 2048, # to review defaults
messages_to_prompt: Any = None,
completion_to_prompt: Any = None,
callback_manager: CallbackManager | None = None,
generate_kwargs: dict[str, Any] | None = None,
model_kwargs: dict[str, Any] | None = None,
verbose: bool = True,
) -> None:
"""SagemakerLLM initializer."""
model_kwargs = model_kwargs or {}
model_kwargs.update({"n_ctx": context_window, "verbose": verbose})
messages_to_prompt = messages_to_prompt or generic_messages_to_prompt
completion_to_prompt = completion_to_prompt or generic_completion_to_prompt
generate_kwargs = generate_kwargs or {}
generate_kwargs.update(
{"temperature": temperature, "max_tokens": max_new_tokens}
)
super().__init__(
endpoint_name=endpoint_name,
temperature=temperature,
context_window=context_window,
max_new_tokens=max_new_tokens,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
callback_manager=callback_manager,
generate_kwargs=generate_kwargs,
model_kwargs=model_kwargs,
verbose=verbose,
)
@property
def inference_params(self):
# TODO expose the rest of params
return {
"do_sample": True,
"top_p": 0.7,
"temperature": self.temperature,
"top_k": 50,
"max_new_tokens": self.max_new_tokens,
}
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
context_window=self.context_window,
num_output=self.max_new_tokens,
model_name="Sagemaker LLama 2",
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
self.generate_kwargs.update({"stream": False})
is_formatted = kwargs.pop("formatted", False)
if not is_formatted:
prompt = self.completion_to_prompt(prompt)
request_params = {
"inputs": prompt,
"stream": False,
"parameters": self.inference_params,
}
resp = self._boto_client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=json.dumps(request_params),
ContentType="application/json",
)
response_body = resp["Body"]
response_str = response_body.read().decode("utf-8")
response_dict = eval(response_str)
return CompletionResponse(
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp
)
@llm_completion_callback()
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
def get_stream():
text = ""
request_params = {
"inputs": prompt,
"stream": True,
"parameters": self.inference_params,
}
resp = self._boto_client.invoke_endpoint_with_response_stream(
EndpointName=self.endpoint_name,
Body=json.dumps(request_params),
ContentType="application/json",
)
event_stream = resp["Body"]
start_json = b"{"
stop_token = "<|endoftext|>"
for line in LineIterator(event_stream):
if line != b"" and start_json in line:
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
if data["token"]["text"] != stop_token:
delta = data["token"]["text"]
text += delta
yield CompletionResponse(delta=delta, text=text, raw=data)
return get_stream()
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
prompt = self.messages_to_prompt(messages)
completion_response = self.complete(prompt, formatted=True, **kwargs)
return completion_response_to_chat_response(completion_response)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
prompt = self.messages_to_prompt(messages)
completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
return stream_completion_response_to_chat_response(completion_response)
|