import argparse import datetime import os import json import torch import torchvision.transforms as transforms from torchvision.transforms import functional as F import spaces from huggingface_hub import snapshot_download import gradio as gr from diffusers import DDIMScheduler from lvdm.models.unet import UNetModel from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler from lvdm.models.layer_controlnet import LayerControlNet from lvdm.pipelines.pipeline_animation import AnimationPipeline from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj from einops import rearrange import cv2 import decord from PIL import Image import numpy as np from scipy.interpolate import PchipInterpolator SAVE_DIR = "outputs" LENGTH = 16 WIDTH = 512 HEIGHT = 320 LAYER_CAPACITY = 4 DEVICE = "cuda" os.makedirs("checkpoints", exist_ok=True) snapshot_download( "Yuppie1204/LayerAnimate-Mix", local_dir="checkpoints/LayerAnimate-Mix", ) class LayerAnimate: @spaces.GPU def __init__(self): self.savedir = SAVE_DIR os.makedirs(self.savedir, exist_ok=True) self.weight_dtype = torch.bfloat16 self.device = DEVICE self.text_encoder = FrozenOpenCLIPEmbedder().eval() self.image_encoder = FrozenOpenCLIPImageEmbedderV2().eval() self.W = WIDTH self.H = HEIGHT self.L = LENGTH self.layer_capacity = LAYER_CAPACITY self.transforms = transforms.Compose([ transforms.Resize(min(self.H, self.W)), transforms.CenterCrop((self.H, self.W)), ]) self.pipeline = None self.generator = None # sample_grid is used to generate fixed trajectories to freeze static layers self.sample_grid = np.meshgrid(np.linspace(0, self.W - 1, 10, dtype=int), np.linspace(0, self.H - 1, 10, dtype=int)) self.sample_grid = np.stack(self.sample_grid, axis=-1).reshape(-1, 1, 2) self.sample_grid = np.repeat(self.sample_grid, self.L, axis=1) # [N, F, 2] @spaces.GPU def set_seed(self, seed): np.random.seed(seed) torch.manual_seed(seed) self.generator = torch.Generator(self.device).manual_seed(seed) @spaces.GPU def set_model(self, pretrained_model_path): scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval() vae, vae_dualref = None, None if "I2V" or "Mix" in pretrained_model_path: vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval() if "Interp" or "Mix" in pretrained_model_path: vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval() unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval() layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval() self.pipeline = AnimationPipeline( vae=vae, vae_dualref=vae_dualref, text_encoder=self.text_encoder, image_encoder=self.image_encoder, image_projector=image_projector, unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler ).to(device=self.device, dtype=self.weight_dtype) if "Interp" or "Mix" in pretrained_model_path: self.pipeline.vae_dualref.decoder.to(dtype=torch.float32) return pretrained_model_path def upload_image(self, image): image = self.transforms(image) return image def run(self, input_image, input_image_end, pretrained_model_path, seed, prompt, n_prompt, num_inference_steps, guidance_scale, *layer_args): self.set_seed(seed) global layer_tracking_points args_layer_tracking_points = [layer_tracking_points[i].value for i in range(self.layer_capacity)] args_layer_masks = layer_args[:self.layer_capacity] args_layer_masks_end = layer_args[self.layer_capacity : 2 * self.layer_capacity] args_layer_controls = layer_args[2 * self.layer_capacity : 3 * self.layer_capacity] args_layer_scores = list(layer_args[3 * self.layer_capacity : 4 * self.layer_capacity]) args_layer_sketches = layer_args[4 * self.layer_capacity : 5 * self.layer_capacity] args_layer_valids = layer_args[5 * self.layer_capacity : 6 * self.layer_capacity] args_layer_statics = layer_args[6 * self.layer_capacity : 7 * self.layer_capacity] for layer_idx in range(self.layer_capacity): if args_layer_controls[layer_idx] != "score": args_layer_scores[layer_idx] = -1 if args_layer_statics[layer_idx]: args_layer_scores[layer_idx] = 0 mode = "i2v" image1 = F.to_tensor(input_image) * 2 - 1 frame_tensor = image1[None].to(self.device) # [F, C, H, W] if input_image_end is not None: mode = "interpolate" image2 = F.to_tensor(input_image_end) * 2 - 1 frame_tensor2 = image2[None].to(self.device) frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0) frame_tensor = frame_tensor[None] if mode == "interpolate": layer_masks = torch.zeros((1, self.layer_capacity, 2, 1, self.H, self.W), dtype=torch.bool) else: layer_masks = torch.zeros((1, self.layer_capacity, 1, 1, self.H, self.W), dtype=torch.bool) for layer_idx in range(self.layer_capacity): if args_layer_masks[layer_idx] is not None: mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5 layer_masks[0, layer_idx, 0] = mask if args_layer_masks_end[layer_idx] is not None and mode == "interpolate": mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5 layer_masks[0, layer_idx, 1] = mask layer_masks = layer_masks.to(self.device) layer_regions = layer_masks * frame_tensor[:, None] layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=self.device) motion_scores = torch.tensor([args_layer_scores], dtype=self.weight_dtype, device=self.device) layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=self.device) sketch = torch.ones((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype) for layer_idx in range(self.layer_capacity): sketch_path = args_layer_sketches[layer_idx] if sketch_path is not None: video_reader = decord.VideoReader(sketch_path) assert len(video_reader) == self.L, f"Input the length of sketch sequence should match the video length." video_frames = video_reader.get_batch(range(self.L)).asnumpy() sketch_values = [F.to_tensor(self.transforms(Image.fromarray(frame))) for frame in video_frames] sketch_values = torch.stack(sketch_values) * 2 - 1 sketch[0, layer_idx] = sketch_values sketch = sketch.to(self.device) heatmap = torch.zeros((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype) heatmap[:, :, :, 0] -= 1 trajectory = [] traj_layer_index = [] for layer_idx in range(self.layer_capacity): tracking_points = args_layer_tracking_points[layer_idx] if args_layer_statics[layer_idx]: # generate pseudo trajectory for static layers temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy() valid_flag = temp_layer_mask[self.sample_grid[:, 0, 1], self.sample_grid[:, 0, 0]] valid_grid = self.sample_grid[valid_flag] # [F, N, 2] trajectory.extend(list(valid_grid)) traj_layer_index.extend([layer_idx] * valid_grid.shape[0]) else: for temp_track in tracking_points: if len(temp_track) > 1: x = [point[0] for point in temp_track] y = [point[1] for point in temp_track] t = np.linspace(0, 1, len(temp_track)) fx = PchipInterpolator(t, x) fy = PchipInterpolator(t, y) t_new = np.linspace(0, 1, self.L) x_new = fx(t_new) y_new = fy(t_new) temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32) trajectory.append(temp_traj) traj_layer_index.append(layer_idx) elif len(temp_track) == 1: trajectory.append(np.array(temp_track * self.L)) traj_layer_index.append(layer_idx) trajectory = np.stack(trajectory) trajectory = np.transpose(trajectory, (1, 0, 2)) traj_layer_index = np.array(traj_layer_index) heatmap = generate_gaussian_heatmap(trajectory, self.W, self.H, traj_layer_index, self.layer_capacity, offset=True) heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w") graymap, offset = heatmap[:, :1], heatmap[:, 1:] graymap = graymap / 255. rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2) rad_max = torch.max(rad) epsilon = 1e-5 offset = offset / (rad_max + epsilon) graymap = graymap * 2 - 1 heatmap = torch.cat([graymap, offset], dim=1) heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity) heatmap = heatmap[None] heatmap = heatmap.to(self.device) sample = self.pipeline( prompt, self.L, self.H, self.W, frame_tensor, layer_masks = layer_masks, layer_regions = layer_regions, layer_static = layer_static, motion_scores = motion_scores, sketch = sketch, trajectory = heatmap, layer_validity = layer_validity, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, guidance_rescale = 0.7, negative_prompt = n_prompt, num_videos_per_prompt = 1, eta = 1.0, generator = self.generator, fps = 24, mode = mode, weight_dtype = self.weight_dtype, output_type = "tensor", ).videos output_video_path = os.path.join(self.savedir, "video.mp4") save_videos_grid(sample, output_video_path, fps=8) output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4") vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool) for traj_idx in range(trajectory.shape[1]): if not args_layer_statics[traj_layer_index[traj_idx]]: vis_traj_flag[traj_idx] = True vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag]) save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10) return output_video_path, output_video_traj_path def update_layer_region(image, layer_mask): if image is None or layer_mask is None: return None, False layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float() image = F.to_tensor(image) layer_region = image * layer_mask_tensor layer_region = F.to_pil_image(layer_region) layer_region.putalpha(layer_mask) return layer_region, True def control_layers(control_type): if control_type == "score": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif control_type == "trajectory": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask): first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float() first_frame = F.to_tensor(first_frame) first_region = first_frame * first_mask_tensor first_region = F.to_pil_image(first_region) first_region.putalpha(first_mask) transparent_background = first_region.convert('RGBA') if last_frame is not None and last_mask is not None: last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float() last_frame = F.to_tensor(last_frame) last_region = last_frame * last_mask_tensor last_region = F.to_pil_image(last_region) last_region.putalpha(last_mask) transparent_background_end = last_region.convert('RGBA') width, height = transparent_background.size transparent_layer = np.zeros((height, width, 4)) for track in tracking_points: if len(track) > 1: for i in range(len(track)-1): start_point = np.array(track[i], dtype=np.int32) end_point = np.array(track[i+1], dtype=np.int32) vx = end_point[0] - start_point[0] vy = end_point[1] - start_point[1] arrow_length = max(np.sqrt(vx**2 + vy**2), 1) if i == len(track)-2: cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length) else: cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,) elif len(track) == 1: cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1) transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8)) trajectory_map = Image.alpha_composite(transparent_background, transparent_layer) if last_frame is not None and last_mask is not None: trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer) else: trajectory_map_end = None return trajectory_map, trajectory_map_end def add_drag(layer_idx): global layer_tracking_points tracking_points = layer_tracking_points[layer_idx].value tracking_points.append([]) return def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask): global layer_tracking_points tracking_points = layer_tracking_points[layer_idx].value tracking_points.pop() trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) return trajectory_map, trajectory_map_end def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask): global layer_tracking_points tracking_points = layer_tracking_points[layer_idx].value tracking_points[-1].pop() trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) return trajectory_map, trajectory_map_end def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData print(f"You selected {evt.value} at {evt.index} from {evt.target}") global layer_tracking_points tracking_points = layer_tracking_points[layer_idx].value tracking_points[-1].append(evt.index) trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) return trajectory_map, trajectory_map_end def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask): global layer_tracking_points layer_tracking_points[layer_idx].value = [[]] tracking_points = layer_tracking_points[layer_idx].value trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) return trajectory_map, trajectory_map_end def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask): if tracking_path is None: layer_region, _ = update_layer_region(first_frame, first_mask) layer_region_end, _ = update_layer_region(last_frame, last_mask) return layer_region, layer_region_end global layer_tracking_points with open(tracking_path, "r") as f: tracking_points = json.load(f) layer_tracking_points[layer_idx].value = tracking_points trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) return trajectory_map, trajectory_map_end def reset_all_controls(): global layer_tracking_points outputs = [] # Reset tracking points states for layer_idx in range(LAYER_CAPACITY): layer_tracking_points[layer_idx].value = [[]] # Reset global components outputs.extend([ "an anime scene.", # text prompt "", # negative text prompt 50, # inference steps 7.5, # guidance scale 42, # seed None, # input image None, # input image end None, # output video None, # output video with trajectory ]) # Reset layer controls visibility outputs.extend([None] * LAYER_CAPACITY) # layer masks outputs.extend([None] * LAYER_CAPACITY) # layer masks end outputs.extend([None] * LAYER_CAPACITY) # layer regions outputs.extend([None] * LAYER_CAPACITY) # layer regions end outputs.extend(["sketch"] * LAYER_CAPACITY) # layer controls outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)]) # layer score controls outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)]) # layer trajectory control 4 buttons outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)]) # layer trajectory file outputs.extend([None] * LAYER_CAPACITY) # layer sketch controls outputs.extend([False] * LAYER_CAPACITY) # layer validity outputs.extend([False] * LAYER_CAPACITY) # layer statics return outputs if __name__ == "__main__": with gr.Blocks() as demo: gr.Markdown("""

LayerAnimate: Layer-level Control for Animation


""") gr.Markdown("""Gradio Demo for LayerAnimate: Layer-level Control for Animation.
Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate
The template is inspired by Framer.""") gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960) gr.Markdown("""## Usage:
1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.
2. Upload frames in the right column.
  1.1. Upload the first frame.
  1.2. (Optional) Upload the last frame.
3. Input layer-level controls in the left column.
  2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.
  2.2. Choose a control type from "motion score", "trajectory" and "sketch".
  2.3. For trajectory control, you can draw trajectories on layer regions.
    2.3.1. Click "Add New Trajectory" to add a new trajectory.
    2.3.2. Click "Reset" to reset all trajectories.
    2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.
    2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.
    2.3.5. Or upload a trajectory file in json format, we provide examples below.
  2.4. For sketch control, you can upload a sketch video.
4. We provide four layers for you to control, and it is not necessary to use all of them.
5. Click "Run" button to generate videos.
6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**
""") layeranimate = LayerAnimate() layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)] layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)] layer_masks = [] layer_masks_end = [] layer_regions = [] layer_regions_end = [] layer_controls = [] layer_score_controls = [] layer_traj_controls = [] layer_traj_files = [] layer_sketch_controls = [] layer_statics = [] layer_valids = [] with gr.Row(): with gr.Column(scale=1): for layer_idx in range(LAYER_CAPACITY): with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False): gr.Markdown("""
Layer Masks
""") gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.") with gr.Row(): with gr.Column(): layer_masks.append(gr.Image( label="Layer Mask for First Frame", height=320, width=512, image_mode="L", type="pil", )) with gr.Column(): layer_masks_end.append(gr.Image( label="Layer Mask for Last Frame", height=320, width=512, image_mode="L", type="pil", )) gr.Markdown("""
Layer Regions
""") with gr.Row(): with gr.Column(): layer_regions.append(gr.Image( label="Layer Region for First Frame", height=320, width=512, image_mode="RGBA", type="pil", # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)), )) with gr.Column(): layer_regions_end.append(gr.Image( label="Layer Region for Last Frame", height=320, width=512, image_mode="RGBA", type="pil", # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)), )) layer_controls.append( gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch") ) layer_score_controls.append( gr.Number(label="Motion Score", value=-1, visible=False) ) layer_traj_controls.append( [ gr.Button(value="Add New Trajectory", visible=False), gr.Button(value="Reset", visible=False), gr.Button(value="Delete Last Step", visible=False), gr.Button(value="Delete Last Trajectory", visible=False), ] ) layer_traj_files.append( gr.File(label="Trajectory File", visible=False) ) layer_sketch_controls.append( gr.Video(label="Sketch", height=320, width=512, visible=True) ) layer_controls[layer_idx].change( fn=control_layers, inputs=layer_controls[layer_idx], outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]] ) with gr.Row(): layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?")) layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?")) with gr.Column(scale=1): pretrained_model_path = gr.Dropdown( label="Pretrained Model", choices=[ "None", "checkpoints/LayerAnimate-Mix", ], value="None", ) text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.") text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="") with gr.Row(): num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000) guidance_scale = gr.Number(label="Guidance Scale", value=7.5) seed = gr.Number(label="Seed", value=42) with gr.Row(): input_image = gr.Image( label="First Frame", height=320, width=512, type="pil", ) input_image_end = gr.Image( label="Last Frame", height=320, width=512, type="pil", ) run_button = gr.Button(value="Run") with gr.Row(): output_video = gr.Video( label="Output Video", height=320, width=512, ) output_video_traj = gr.Video( label="Output Video with Trajectory", height=320, width=512, ) clear_button = gr.Button(value="Clear") with gr.Row(): gr.Markdown(""" ## Citation ```bibtex @article{yang2025layeranimate, author = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang}, title = {LayerAnimate: Layer-level Control for Animation}, journal = {arXiv preprint arXiv:2501.08295}, year = {2025}, } ``` """) pretrained_model_path.input(layeranimate.set_model, pretrained_model_path, pretrained_model_path) input_image.upload(layeranimate.upload_image, input_image, input_image) input_image_end.upload(layeranimate.upload_image, input_image_end, input_image_end) for i in range(LAYER_CAPACITY): layer_masks[i].upload(layeranimate.upload_image, layer_masks[i], layer_masks[i]) layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]]) layer_masks_end[i].upload(layeranimate.upload_image, layer_masks_end[i], layer_masks_end[i]) layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]]) layer_traj_controls[i][0].click(add_drag, layer_indices[i], None) layer_traj_controls[i][1].click( reset_states, [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) layer_traj_controls[i][2].click( delete_last_step, [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) layer_traj_controls[i][3].click( delete_last_drag, [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) layer_traj_files[i].change( upload_tracking_points, [layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) layer_regions[i].select( add_tracking_points, [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) layer_regions_end[i].select( add_tracking_points, [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], [layer_regions[i], layer_regions_end[i]] ) run_button.click( layeranimate.run, [input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale, *layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics], [output_video, output_video_traj] ) clear_button.click( reset_all_controls, [], [ text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed, input_image, input_image_end, output_video, output_video_traj, *layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end, *layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files, *layer_sketch_controls, *layer_valids, *layer_statics ] ) examples = gr.Examples( examples=[ [ "__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg", "score", "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None, None, True, False, "score", "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None, None, True, False, "trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1, "__assets__/demos/demo_3/trajectory.json", None, True, False, "sketch", "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1, None, "__assets__/demos/demo_3/sketch.mp4", True, False, 52 ], [ "__assets__/demos/demo_4/first_frame.jpg", None, "score", "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None, None, True, True, "trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1, "__assets__/demos/demo_4/trajectory.json", None, True, False, "sketch", "__assets__/demos/demo_4/layer_2.jpg", None, -1, None, "__assets__/demos/demo_4/sketch.mp4", True, False, "score", None, None, -1, None, None, False, False, 42 ], [ "__assets__/demos/demo_5/first_frame.jpg", None, "sketch", "__assets__/demos/demo_5/layer_0.jpg", None, -1, None, "__assets__/demos/demo_5/sketch.mp4", True, False, "trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None, True, False, "score", None, None, -1, None, None, False, False, "score", None, None, -1, None, None, False, False, 47 ], ], inputs=[ input_image, input_image_end, layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0], layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1], layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2], layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3], seed ], ) demo.launch()