diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..d22cef17abd65c6b9edcc26dfb84d6ae5fe6c6ac 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +*.gif filter=lfs diff=lfs merge=lfs -text diff --git a/README.md b/README.md index 2875742637ffac46795e86bb22831c0fa692df28..c6a6fbbe6d144a2b7d177c2e60404e0e9e85f259 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ sdk_version: 5.23.1 app_file: app.py pinned: false license: mit -short_description: https://arxiv.org/abs/2501.08295 +short_description: "LayerAnimate: Layer-level Control for Animation" --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/__assets__/demos/demo_1/first_frame.jpg b/__assets__/demos/demo_1/first_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f60be07dba8315293b9e2509e4ca8d4d6a9dfe2d Binary files /dev/null and b/__assets__/demos/demo_1/first_frame.jpg differ diff --git a/__assets__/demos/demo_1/layer_0.jpg b/__assets__/demos/demo_1/layer_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..21f5d8a1548f7a20adc91fa864cf2fc9a5a26286 Binary files /dev/null and b/__assets__/demos/demo_1/layer_0.jpg differ diff --git a/__assets__/demos/demo_1/layer_1.jpg b/__assets__/demos/demo_1/layer_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0823270c27edfa02461a1c3da5a0d0e2c6f35ca5 Binary files /dev/null and b/__assets__/demos/demo_1/layer_1.jpg differ diff --git a/__assets__/demos/demo_1/layer_2.jpg b/__assets__/demos/demo_1/layer_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ffacabc31c6006179d9a007adee229885cda47fd Binary files /dev/null and b/__assets__/demos/demo_1/layer_2.jpg differ diff --git a/__assets__/demos/demo_1/sketch.mp4 b/__assets__/demos/demo_1/sketch.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..9e7bba620e6b14bb4fb97d31f0388874ed81e959 Binary files /dev/null and b/__assets__/demos/demo_1/sketch.mp4 differ diff --git a/__assets__/demos/demo_1/trajectory.json b/__assets__/demos/demo_1/trajectory.json new file mode 100644 index 0000000000000000000000000000000000000000..4697b21da16ddeff8d242750cdf5b95830916512 --- /dev/null +++ b/__assets__/demos/demo_1/trajectory.json @@ -0,0 +1,200 @@ +[ + [ + [ + 111.87965393066406, + 204.28741455078125 + ], + [ + 83.42483520507812, + 204.21835327148438 + ], + [ + 52.417137145996094, + 205.34869384765625 + ], + [ + -10.01504135131836, + 205.83694458007812 + ], + [ + -33.109561920166016, + 206.53018188476562 + ], + [ + -86.02885437011719, + 205.10772705078125 + ], + [ + -119.59435272216797, + 204.4576873779297 + ], + [ + -168.70248413085938, + 210.6188201904297 + ], + [ + -185.9542999267578, + 211.16294860839844 + ], + [ + -206.82852172851562, + 207.50912475585938 + ], + [ + -232.2637939453125, + 208.35643005371094 + ], + [ + -177.6964111328125, + 205.50949096679688 + ], + [ + -231.19761657714844, + 203.8624267578125 + ], + [ + -276.06622314453125, + 208.6024169921875 + ], + [ + -285.68218994140625, + 210.30313110351562 + ], + [ + -235.0211639404297, + 207.910400390625 + ] + ], + [ + [ + 130.59063720703125, + 131.48106384277344 + ], + [ + 101.31892395019531, + 131.62567138671875 + ], + [ + 69.3387451171875, + 132.40696716308594 + ], + [ + 6.821704864501953, + 133.10546875 + ], + [ + -21.6120548248291, + 132.92977905273438 + ], + [ + -83.36480712890625, + 132.2947998046875 + ], + [ + -111.29481506347656, + 131.91827392578125 + ], + [ + -168.74850463867188, + 138.11587524414062 + ], + [ + -198.75299072265625, + 139.32774353027344 + ], + [ + -253.08055114746094, + 136.65480041503906 + ], + [ + -278.3507080078125, + 136.42958068847656 + ], + [ + -312.9150390625, + 134.22898864746094 + ], + [ + -332.20989990234375, + 133.93161010742188 + ], + [ + -357.1211853027344, + 139.33224487304688 + ], + [ + -361.4031677246094, + 139.66172790527344 + ], + [ + -338.45501708984375, + 141.38809204101562 + ] + ], + [ + [ + 308.344970703125, + 6.6701483726501465 + ], + [ + 278.66864013671875, + 7.116205215454102 + ], + [ + 247.65390014648438, + 7.756659507751465 + ], + [ + 184.76953125, + 8.749884605407715 + ], + [ + 154.9658203125, + 8.66163444519043 + ], + [ + 92.775146484375, + 7.572597503662109 + ], + [ + 63.20433044433594, + 7.524573802947998 + ], + [ + 1.4797935485839844, + 13.07353401184082 + ], + [ + -26.288057327270508, + 13.74260139465332 + ], + [ + -83.00379943847656, + 11.522849082946777 + ], + [ + -109.52509307861328, + 10.739717483520508 + ], + [ + -140.5462646484375, + 8.596296310424805 + ], + [ + -155.35394287109375, + 8.009984970092773 + ], + [ + -180.55775451660156, + 13.584362030029297 + ], + [ + -185.0371856689453, + 14.09956169128418 + ], + [ + -203.57778930664062, + 18.082473754882812 + ] + ] +] \ No newline at end of file diff --git a/__assets__/demos/demo_1/trajectory.npz b/__assets__/demos/demo_1/trajectory.npz new file mode 100644 index 0000000000000000000000000000000000000000..c8bcac4a0e831ebc2e9cbf1c89946bfbd11b57a5 --- /dev/null +++ b/__assets__/demos/demo_1/trajectory.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:232a68740a9d2828277e786d760cb2d7436f4617ae1d64d31a61888be0c65ea1 +size 994 diff --git a/__assets__/demos/demo_2/first_frame.jpg b/__assets__/demos/demo_2/first_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5857abee5ff9bc0e87cee79aeb100f294421ff1f Binary files /dev/null and b/__assets__/demos/demo_2/first_frame.jpg differ diff --git a/__assets__/demos/demo_2/layer_0.jpg b/__assets__/demos/demo_2/layer_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f45a856cf35a5be895cbcde5e8eeb70513ab038 Binary files /dev/null and b/__assets__/demos/demo_2/layer_0.jpg differ diff --git a/__assets__/demos/demo_2/layer_1.jpg b/__assets__/demos/demo_2/layer_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3b661b6bc4e7225f5efc5fdc780cd64edd7ab488 Binary files /dev/null and b/__assets__/demos/demo_2/layer_1.jpg differ diff --git a/__assets__/demos/demo_2/layer_2.jpg b/__assets__/demos/demo_2/layer_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2412784cdf7fb67eb92cef80edb39bd3a4c5be68 Binary files /dev/null and b/__assets__/demos/demo_2/layer_2.jpg differ diff --git a/__assets__/demos/demo_2/sketch.mp4 b/__assets__/demos/demo_2/sketch.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..4f1846212648bfde1bf520c33fe87459bd7ad5ad Binary files /dev/null and b/__assets__/demos/demo_2/sketch.mp4 differ diff --git a/__assets__/demos/demo_2/trajectory.json b/__assets__/demos/demo_2/trajectory.json new file mode 100644 index 0000000000000000000000000000000000000000..4e2f69bc9803beacdde5d63bbf64d4900993d6bb --- /dev/null +++ b/__assets__/demos/demo_2/trajectory.json @@ -0,0 +1,200 @@ +[ + [ + [ + 158.21946716308594, + 245.89105224609375 + ], + [ + 148.94857788085938, + 246.4789276123047 + ], + [ + 137.88522338867188, + 247.1299285888672 + ], + [ + 128.4403839111328, + 247.8033905029297 + ], + [ + 127.84039306640625, + 246.24864196777344 + ], + [ + 127.06155395507812, + 244.60606384277344 + ], + [ + 126.77435302734375, + 243.17208862304688 + ], + [ + 126.42509460449219, + 243.04747009277344 + ], + [ + 125.61285400390625, + 242.14913940429688 + ], + [ + 125.40904235839844, + 242.65948486328125 + ], + [ + 125.03759765625, + 242.90908813476562 + ], + [ + 124.67877197265625, + 242.95994567871094 + ], + [ + 125.00759887695312, + 242.61265563964844 + ], + [ + 125.37916564941406, + 242.13555908203125 + ], + [ + 125.7420654296875, + 242.410888671875 + ], + [ + 125.54336547851562, + 242.98825073242188 + ] + ], + [ + [ + 223.55435180664062, + 204.28741455078125 + ], + [ + 207.83377075195312, + 202.7445068359375 + ], + [ + 193.4696044921875, + 200.418701171875 + ], + [ + 178.7669677734375, + 199.83621215820312 + ], + [ + 178.14218139648438, + 200.34848022460938 + ], + [ + 176.58251953125, + 200.19627380371094 + ], + [ + 175.0523681640625, + 200.24407958984375 + ], + [ + 174.57379150390625, + 199.90940856933594 + ], + [ + 173.37542724609375, + 200.4640350341797 + ], + [ + 173.5262451171875, + 200.5198974609375 + ], + [ + 173.60935974121094, + 200.36471557617188 + ], + [ + 173.8643035888672, + 200.39389038085938 + ], + [ + 173.903076171875, + 200.2958984375 + ], + [ + 173.96859741210938, + 200.00491333007812 + ], + [ + 174.22422790527344, + 200.09921264648438 + ], + [ + 174.16683959960938, + 200.00193786621094 + ] + ], + [ + [ + 232.88790893554688, + 261.492431640625 + ], + [ + 224.37376403808594, + 258.9049072265625 + ], + [ + 214.7504119873047, + 255.82171630859375 + ], + [ + 205.59695434570312, + 252.74368286132812 + ], + [ + 203.56024169921875, + 254.83567810058594 + ], + [ + 200.3128662109375, + 256.933349609375 + ], + [ + 197.56045532226562, + 258.17236328125 + ], + [ + 196.72007751464844, + 258.3282470703125 + ], + [ + 194.2041473388672, + 259.42486572265625 + ], + [ + 194.23858642578125, + 259.9649353027344 + ], + [ + 194.01547241210938, + 260.14569091796875 + ], + [ + 193.87156677246094, + 259.9699401855469 + ], + [ + 193.9617919921875, + 259.7339172363281 + ], + [ + 193.89659118652344, + 259.5014343261719 + ], + [ + 193.8680419921875, + 259.7557373046875 + ], + [ + 193.91842651367188, + 260.28717041015625 + ] + ] +] \ No newline at end of file diff --git a/__assets__/demos/demo_2/trajectory.npz b/__assets__/demos/demo_2/trajectory.npz new file mode 100644 index 0000000000000000000000000000000000000000..29549b7078bebcb3a89535ee9ea87cfcba35f4a8 --- /dev/null +++ b/__assets__/demos/demo_2/trajectory.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba8194e3bd1376e10cb6c708d59603c406269b95bb1e266b20c7cfa66e248875 +size 972 diff --git a/__assets__/demos/demo_3/first_frame.jpg b/__assets__/demos/demo_3/first_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..de487915b2b1aa3a7f996b729b8656a21ba089ae Binary files /dev/null and b/__assets__/demos/demo_3/first_frame.jpg differ diff --git a/__assets__/demos/demo_3/last_frame.jpg b/__assets__/demos/demo_3/last_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..32b453a70e67b1ecdd1b2348240451911294efa9 Binary files /dev/null and b/__assets__/demos/demo_3/last_frame.jpg differ diff --git a/__assets__/demos/demo_3/layer_0.jpg b/__assets__/demos/demo_3/layer_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c8e02cf61ab095e8f14a28cae14af52957e5768 Binary files /dev/null and b/__assets__/demos/demo_3/layer_0.jpg differ diff --git a/__assets__/demos/demo_3/layer_0_last.jpg b/__assets__/demos/demo_3/layer_0_last.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da2bd681bcd3e6f6474056d8913d9b9d56d20694 Binary files /dev/null and b/__assets__/demos/demo_3/layer_0_last.jpg differ diff --git a/__assets__/demos/demo_3/layer_1.jpg b/__assets__/demos/demo_3/layer_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d4fc6a6301ad78768ff49af2e02b5fd7ee3dad46 Binary files /dev/null and b/__assets__/demos/demo_3/layer_1.jpg differ diff --git a/__assets__/demos/demo_3/layer_1_last.jpg b/__assets__/demos/demo_3/layer_1_last.jpg new file mode 100644 index 0000000000000000000000000000000000000000..354d9897e8c5f2a5430655b65be181ad1ddccc7d Binary files /dev/null and b/__assets__/demos/demo_3/layer_1_last.jpg differ diff --git a/__assets__/demos/demo_3/layer_2.jpg b/__assets__/demos/demo_3/layer_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b19cd4af7438b4176f55969a2b5aa7b2be5471b3 Binary files /dev/null and b/__assets__/demos/demo_3/layer_2.jpg differ diff --git a/__assets__/demos/demo_3/layer_2_last.jpg b/__assets__/demos/demo_3/layer_2_last.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9fdf0d9adb42c0f4ee382d90af69db18db6b3bff Binary files /dev/null and b/__assets__/demos/demo_3/layer_2_last.jpg differ diff --git a/__assets__/demos/demo_3/layer_3.jpg b/__assets__/demos/demo_3/layer_3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ccc74e9066ba66c1780b17c86b24bc67dac8804c Binary files /dev/null and b/__assets__/demos/demo_3/layer_3.jpg differ diff --git a/__assets__/demos/demo_3/layer_3_last.jpg b/__assets__/demos/demo_3/layer_3_last.jpg new file mode 100644 index 0000000000000000000000000000000000000000..490f072ddd159a88f4201bff394deec3a5474046 Binary files /dev/null and b/__assets__/demos/demo_3/layer_3_last.jpg differ diff --git a/__assets__/demos/demo_3/sketch.mp4 b/__assets__/demos/demo_3/sketch.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..abe9e92d9b50435c25f2a18683e3d762f3985531 Binary files /dev/null and b/__assets__/demos/demo_3/sketch.mp4 differ diff --git a/__assets__/demos/demo_3/trajectory.json b/__assets__/demos/demo_3/trajectory.json new file mode 100644 index 0000000000000000000000000000000000000000..13c5156e5626f3e51a20ecc8e6652eb95f5d14e6 --- /dev/null +++ b/__assets__/demos/demo_3/trajectory.json @@ -0,0 +1,134 @@ +[ + [ + [ + 49.66927719116211, + 126.28060150146484 + ], + [ + 53.070796966552734, + 140.00479125976562 + ], + [ + 58.86982345581055, + 157.8321533203125 + ], + [ + 69.01676177978516, + 175.84800720214844 + ], + [ + 76.01651000976562, + 197.62847900390625 + ], + [ + 93.34223937988281, + 232.17538452148438 + ], + [ + 96.88280487060547, + 246.68162536621094 + ], + [ + 105.09373474121094, + 265.91741943359375 + ], + [ + 122.41947174072266, + 300.46429443359375 + ], + [ + 139.74520874023438, + 335.0111999511719 + ], + [ + 157.07093811035156, + 369.55810546875 + ], + [ + 174.39666748046875, + 404.10498046875 + ], + [ + 191.722412109375, + 438.65185546875 + ], + [ + 209.0481414794922, + 473.19873046875 + ], + [ + 226.37387084960938, + 507.74560546875 + ], + [ + 243.6995849609375, + 542.29248046875 + ] + ], + [ + [ + 56.677669525146484, + 69.07560729980469 + ], + [ + 66.92218780517578, + 90.37911224365234 + ], + [ + 79.62323760986328, + 116.14250183105469 + ], + [ + 91.2628173828125, + 141.8087921142578 + ], + [ + 103.7956771850586, + 167.58724975585938 + ], + [ + 117.59683227539062, + 195.22598266601562 + ], + [ + 127.79037475585938, + 221.12567138671875 + ], + [ + 140.4638671875, + 248.97164916992188 + ], + [ + 138.9651641845703, + 256.9488830566406 + ], + [ + 165.24566650390625, + 296.32525634765625 + ], + [ + 191.52615356445312, + 335.70166015625 + ], + [ + 217.806640625, + 375.07806396484375 + ], + [ + 244.08714294433594, + 414.4544372558594 + ], + [ + 270.3676452636719, + 453.830810546875 + ], + [ + 296.64813232421875, + 493.20721435546875 + ], + [ + 322.92864990234375, + 532.5836181640625 + ] + ] +] \ No newline at end of file diff --git a/__assets__/demos/demo_3/trajectory.npz b/__assets__/demos/demo_3/trajectory.npz new file mode 100644 index 0000000000000000000000000000000000000000..8bc355659b58c39586a685f0aba3357db5414f13 --- /dev/null +++ b/__assets__/demos/demo_3/trajectory.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a1080b8523b361f2e4fb3f5591c88f50e44d176a404e5f62b04cfc2bfe8c2f5d +size 857 diff --git a/__assets__/demos/demo_4/first_frame.jpg b/__assets__/demos/demo_4/first_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..df907a7d9d867eadcf038fa8df0ff8c4f2a93d38 Binary files /dev/null and b/__assets__/demos/demo_4/first_frame.jpg differ diff --git a/__assets__/demos/demo_4/layer_0.jpg b/__assets__/demos/demo_4/layer_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..72760831c505bff25b56e60145869420539b382e Binary files /dev/null and b/__assets__/demos/demo_4/layer_0.jpg differ diff --git a/__assets__/demos/demo_4/layer_1.jpg b/__assets__/demos/demo_4/layer_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4eb96548a0f0e746dd7cd6b76ca77e736372b570 Binary files /dev/null and b/__assets__/demos/demo_4/layer_1.jpg differ diff --git a/__assets__/demos/demo_4/layer_2.jpg b/__assets__/demos/demo_4/layer_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c435db9a6164cf342b1d06887ff2772504d59e55 Binary files /dev/null and b/__assets__/demos/demo_4/layer_2.jpg differ diff --git a/__assets__/demos/demo_4/sketch.mp4 b/__assets__/demos/demo_4/sketch.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..84506e5ffc349f63ec1241dc15d6f6e9035e0675 Binary files /dev/null and b/__assets__/demos/demo_4/sketch.mp4 differ diff --git a/__assets__/demos/demo_4/trajectory.json b/__assets__/demos/demo_4/trajectory.json new file mode 100644 index 0000000000000000000000000000000000000000..79124288bf3f869fce0978bddcb7252e3297a060 --- /dev/null +++ b/__assets__/demos/demo_4/trajectory.json @@ -0,0 +1,200 @@ +[ + [ + [ + 186.72357177734375, + 225.0892333984375 + ], + [ + 186.59104919433594, + 220.61599731445312 + ], + [ + 190.39842224121094, + 216.0291748046875 + ], + [ + 199.52769470214844, + 213.26031494140625 + ], + [ + 204.145263671875, + 214.56866455078125 + ], + [ + 209.41751098632812, + 214.23330688476562 + ], + [ + 211.30255126953125, + 216.12774658203125 + ], + [ + 215.53131103515625, + 215.55880737304688 + ], + [ + 211.28453063964844, + 215.3497314453125 + ], + [ + 205.66819763183594, + 210.34344482421875 + ], + [ + 208.09231567382812, + 197.720458984375 + ], + [ + 201.51205444335938, + 215.72598266601562 + ], + [ + 191.19480895996094, + 223.12850952148438 + ], + [ + 194.90512084960938, + 222.38108825683594 + ], + [ + 200.74607849121094, + 217.3187713623047 + ], + [ + 207.563720703125, + 235.63250732421875 + ] + ], + [ + [ + 289.63397216796875, + 230.28970336914062 + ], + [ + 289.8543701171875, + 227.20205688476562 + ], + [ + 292.2384033203125, + 223.03854370117188 + ], + [ + 301.47711181640625, + 219.50289916992188 + ], + [ + 308.8260803222656, + 220.3004608154297 + ], + [ + 315.6751403808594, + 219.62095642089844 + ], + [ + 317.8089599609375, + 221.09295654296875 + ], + [ + 320.73956298828125, + 221.21011352539062 + ], + [ + 317.1898193359375, + 221.21250915527344 + ], + [ + 319.5433349609375, + 217.74606323242188 + ], + [ + 317.6147155761719, + 207.62603759765625 + ], + [ + 308.29156494140625, + 224.09878540039062 + ], + [ + 294.7052917480469, + 230.4814910888672 + ], + [ + 298.7985534667969, + 230.0016326904297 + ], + [ + 304.0728454589844, + 226.04998779296875 + ], + [ + 314.6731872558594, + 242.630126953125 + ] + ], + [ + [ + 214.7900390625, + 230.28970336914062 + ], + [ + 214.2034912109375, + 226.12539672851562 + ], + [ + 216.921630859375, + 221.91062927246094 + ], + [ + 226.7117156982422, + 219.55148315429688 + ], + [ + 232.1102294921875, + 220.2542724609375 + ], + [ + 237.49270629882812, + 219.5577850341797 + ], + [ + 240.1033935546875, + 220.77169799804688 + ], + [ + 243.27154541015625, + 220.56069946289062 + ], + [ + 240.3792724609375, + 221.12344360351562 + ], + [ + 235.10897827148438, + 216.4136962890625 + ], + [ + 234.0819091796875, + 202.91900634765625 + ], + [ + 224.08642578125, + 220.4688720703125 + ], + [ + 212.40911865234375, + 227.7927703857422 + ], + [ + 218.22300720214844, + 226.47549438476562 + ], + [ + 225.32315063476562, + 221.8306884765625 + ], + [ + 234.59808349609375, + 239.94235229492188 + ] + ] +] \ No newline at end of file diff --git a/__assets__/demos/demo_4/trajectory.npz b/__assets__/demos/demo_4/trajectory.npz new file mode 100644 index 0000000000000000000000000000000000000000..fcf141bee93a53a0ce17816a88c7772020042988 --- /dev/null +++ b/__assets__/demos/demo_4/trajectory.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c2904e38cbc8820daaa5f88085bbfc33aa3cd8b9be7d9588e02d6cadcccf2fa +size 973 diff --git a/__assets__/demos/demo_5/first_frame.jpg b/__assets__/demos/demo_5/first_frame.jpg new file mode 100644 index 0000000000000000000000000000000000000000..abda485d2674818e31b06c8d69a37527dda0f0ce Binary files /dev/null and b/__assets__/demos/demo_5/first_frame.jpg differ diff --git a/__assets__/demos/demo_5/layer_0.jpg b/__assets__/demos/demo_5/layer_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..95c55ae1c1fff7041cfeae5e572ef9efb54bae1e Binary files /dev/null and b/__assets__/demos/demo_5/layer_0.jpg differ diff --git a/__assets__/demos/demo_5/layer_1.jpg b/__assets__/demos/demo_5/layer_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1449431b4ac96c71ba94c6289f31391400ae5ab0 Binary files /dev/null and b/__assets__/demos/demo_5/layer_1.jpg differ diff --git a/__assets__/demos/demo_5/sketch.mp4 b/__assets__/demos/demo_5/sketch.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..673f9c61ba5ecf5a8ca44f3bd38424ecb6a3795a Binary files /dev/null and b/__assets__/demos/demo_5/sketch.mp4 differ diff --git a/__assets__/demos/demo_5/trajectory.json b/__assets__/demos/demo_5/trajectory.json new file mode 100644 index 0000000000000000000000000000000000000000..760eba5119d5bdf20fcc54a36d27ace3d152cfca --- /dev/null +++ b/__assets__/demos/demo_5/trajectory.json @@ -0,0 +1,332 @@ +[ + [ + [ + 494.2274169921875, + 22.271512985229492 + ], + [ + 499.44189453125, + 21.746015548706055 + ], + [ + 504.0919189453125, + 21.225364685058594 + ], + [ + 514.5880737304688, + 20.82619285583496 + ], + [ + 520.4939575195312, + 20.672199249267578 + ], + [ + 526.637451171875, + 20.305557250976562 + ], + [ + 534.9617919921875, + 20.358591079711914 + ], + [ + 539.2017211914062, + 20.12591552734375 + ], + [ + 543.9376220703125, + 20.107173919677734 + ], + [ + 549.5306396484375, + 19.739456176757812 + ], + [ + 553.4171142578125, + 20.842308044433594 + ], + [ + 554.49462890625, + 20.15322494506836 + ], + [ + 559.0555419921875, + 21.292396545410156 + ], + [ + 558.5130004882812, + 21.357444763183594 + ], + [ + 561.72607421875, + 20.114139556884766 + ], + [ + 560.4268798828125, + 21.73964500427246 + ] + ], + [ + [ + 494.2274169921875, + 48.27378463745117 + ], + [ + 494.85711669921875, + 48.05669403076172 + ], + [ + 494.21563720703125, + 48.0822868347168 + ], + [ + 492.88446044921875, + 48.20854187011719 + ], + [ + 491.5914306640625, + 48.36796569824219 + ], + [ + 490.6370849609375, + 48.649070739746094 + ], + [ + 488.6202392578125, + 48.874202728271484 + ], + [ + 487.603271484375, + 49.16374969482422 + ], + [ + 486.469970703125, + 49.414939880371094 + ], + [ + 484.92120361328125, + 49.98759460449219 + ], + [ + 483.7000427246094, + 50.26809310913086 + ], + [ + 482.22125244140625, + 50.42219161987305 + ], + [ + 480.54931640625, + 50.766448974609375 + ], + [ + 479.24481201171875, + 51.03229522705078 + ], + [ + 478.1097106933594, + 51.489837646484375 + ], + [ + 476.470947265625, + 52.048194885253906 + ] + ], + [ + [ + 64.8839111328125, + 287.4947204589844 + ], + [ + 81.71736145019531, + 288.09869384765625 + ], + [ + 100.02552795410156, + 288.89111328125 + ], + [ + 128.72686767578125, + 289.8943176269531 + ], + [ + 149.62322998046875, + 290.7263488769531 + ], + [ + 170.50192260742188, + 291.29925537109375 + ], + [ + 203.6192626953125, + 292.2691345214844 + ], + [ + 227.08547973632812, + 292.68035888671875 + ], + [ + 250.68621826171875, + 293.3591613769531 + ], + [ + 286.62176513671875, + 294.1515197753906 + ], + [ + 311.21240234375, + 294.3829650878906 + ], + [ + 335.68389892578125, + 294.7114562988281 + ], + [ + 373.18115234375, + 295.2404479980469 + ], + [ + 397.2961120605469, + 295.111572265625 + ], + [ + 422.346923828125, + 295.5068054199219 + ], + [ + 457.2431335449219, + 295.49383544921875 + ] + ], + [ + [ + 64.8839111328125, + 235.4901580810547 + ], + [ + 61.33024597167969, + 235.5504150390625 + ], + [ + 57.36271667480469, + 235.6099090576172 + ], + [ + 50.592864990234375, + 235.9037322998047 + ], + [ + 46.184783935546875, + 235.94981384277344 + ], + [ + 42.2303466796875, + 235.8488006591797 + ], + [ + 35.333221435546875, + 235.73272705078125 + ], + [ + 29.864356994628906, + 236.13253784179688 + ], + [ + 24.596290588378906, + 236.366943359375 + ], + [ + 17.585124969482422, + 236.61953735351562 + ], + [ + 12.934989929199219, + 236.7737274169922 + ], + [ + 8.478790283203125, + 236.75421142578125 + ], + [ + 2.206012725830078, + 236.9993896484375 + ], + [ + -2.862123489379883, + 237.2617645263672 + ], + [ + -7.3507843017578125, + 237.2784423828125 + ], + [ + -12.782325744628906, + 237.2703094482422 + ] + ], + [ + [ + 92.88457489013672, + 225.0892333984375 + ], + [ + 88.737548828125, + 225.09442138671875 + ], + [ + 84.08223724365234, + 225.36553955078125 + ], + [ + 76.90846252441406, + 225.7208251953125 + ], + [ + 72.26066589355469, + 225.9451141357422 + ], + [ + 67.7042465209961, + 226.13169860839844 + ], + [ + 60.917144775390625, + 226.32199096679688 + ], + [ + 55.98236083984375, + 226.5792236328125 + ], + [ + 51.30162811279297, + 226.9581298828125 + ], + [ + 44.654823303222656, + 227.06956481933594 + ], + [ + 40.06951904296875, + 227.15420532226562 + ], + [ + 35.59206771850586, + 227.13719177246094 + ], + [ + 29.056011199951172, + 227.17002868652344 + ], + [ + 24.805736541748047, + 227.24826049804688 + ], + [ + 20.537612915039062, + 227.34564208984375 + ], + [ + 14.309333801269531, + 227.30154418945312 + ] + ] +] \ No newline at end of file diff --git a/__assets__/demos/demo_5/trajectory.npz b/__assets__/demos/demo_5/trajectory.npz new file mode 100644 index 0000000000000000000000000000000000000000..821d2643d46b2bf9b5b98c53a66d8fecd1fc32d6 --- /dev/null +++ b/__assets__/demos/demo_5/trajectory.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e9da4a1142e8210f0486ff1682fe7853e8714ecf813bfef4b9019efbc102f61 +size 1222 diff --git a/__assets__/figs/demos.gif b/__assets__/figs/demos.gif new file mode 100644 index 0000000000000000000000000000000000000000..6a8bee693edf1c3fb75f64be6b28daa8c84cdc1d --- /dev/null +++ b/__assets__/figs/demos.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1fec782faeaf8433550a05a782216b449e84bb3e1c1db03cbcd2fbb25f5a0bc1 +size 10389569 diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..06580f3e216d0a7622092291c62284618a60398a --- /dev/null +++ b/app.py @@ -0,0 +1,651 @@ +import argparse +import datetime +import os +import json + +import torch +import torchvision.transforms as transforms +from torchvision.transforms import functional as F + +import spaces +from huggingface_hub import snapshot_download +import gradio as gr + +from diffusers import DDIMScheduler + +from lvdm.models.unet import UNetModel +from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref +from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler +from lvdm.models.layer_controlnet import LayerControlNet +from lvdm.pipelines.pipeline_animation import AnimationPipeline +from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj + +from einops import rearrange +import cv2 +import decord +from PIL import Image +import numpy as np +from scipy.interpolate import PchipInterpolator + +SAVE_DIR = "outputs" +LENGTH = 16 +WIDTH = 512 +HEIGHT = 320 +LAYER_CAPACITY = 4 +DEVICE = "cuda" + +os.makedirs("checkpoints", exist_ok=True) + +snapshot_download( + "Yuppie1204/LayerAnimate-Mix", + local_dir="checkpoints/LayerAnimate-Mix", +) + +class LayerAnimate: + + @spaces.GPU + def __init__(self): + self.savedir = SAVE_DIR + os.makedirs(self.savedir, exist_ok=True) + + self.weight_dtype = torch.bfloat16 + self.device = DEVICE + self.text_encoder = FrozenOpenCLIPEmbedder().eval() + self.image_encoder = FrozenOpenCLIPImageEmbedderV2().eval() + + self.W = WIDTH + self.H = HEIGHT + self.L = LENGTH + self.layer_capacity = LAYER_CAPACITY + + self.transforms = transforms.Compose([ + transforms.Resize(min(self.H, self.W)), + transforms.CenterCrop((self.H, self.W)), + ]) + self.pipeline = None + self.generator = None + # sample_grid is used to generate fixed trajectories to freeze static layers + self.sample_grid = np.meshgrid(np.linspace(0, self.W - 1, 10, dtype=int), np.linspace(0, self.H - 1, 10, dtype=int)) + self.sample_grid = np.stack(self.sample_grid, axis=-1).reshape(-1, 1, 2) + self.sample_grid = np.repeat(self.sample_grid, self.L, axis=1) # [N, F, 2] + + @spaces.GPU + def set_seed(self, seed): + np.random.seed(seed) + torch.manual_seed(seed) + self.generator = torch.Generator(self.device).manual_seed(seed) + + @spaces.GPU + def set_model(self, pretrained_model_path): + scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") + image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval() + vae, vae_dualref = None, None + if "I2V" or "Mix" in pretrained_model_path: + vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval() + if "Interp" or "Mix" in pretrained_model_path: + vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval() + unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval() + layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval() + + self.pipeline = AnimationPipeline( + vae=vae, vae_dualref=vae_dualref, text_encoder=self.text_encoder, image_encoder=self.image_encoder, image_projector=image_projector, + unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler + ).to(device=self.device, dtype=self.weight_dtype) + if "Interp" or "Mix" in pretrained_model_path: + self.pipeline.vae_dualref.decoder.to(dtype=torch.float32) + return pretrained_model_path + + def upload_image(self, image): + image = self.transforms(image) + return image + + def run(self, input_image, input_image_end, pretrained_model_path, seed, + prompt, n_prompt, num_inference_steps, guidance_scale, + *layer_args): + self.set_seed(seed) + global layer_tracking_points + args_layer_tracking_points = [layer_tracking_points[i].value for i in range(self.layer_capacity)] + + args_layer_masks = layer_args[:self.layer_capacity] + args_layer_masks_end = layer_args[self.layer_capacity : 2 * self.layer_capacity] + args_layer_controls = layer_args[2 * self.layer_capacity : 3 * self.layer_capacity] + args_layer_scores = list(layer_args[3 * self.layer_capacity : 4 * self.layer_capacity]) + args_layer_sketches = layer_args[4 * self.layer_capacity : 5 * self.layer_capacity] + args_layer_valids = layer_args[5 * self.layer_capacity : 6 * self.layer_capacity] + args_layer_statics = layer_args[6 * self.layer_capacity : 7 * self.layer_capacity] + for layer_idx in range(self.layer_capacity): + if args_layer_controls[layer_idx] != "score": + args_layer_scores[layer_idx] = -1 + if args_layer_statics[layer_idx]: + args_layer_scores[layer_idx] = 0 + + mode = "i2v" + image1 = F.to_tensor(input_image) * 2 - 1 + frame_tensor = image1[None].to(self.device) # [F, C, H, W] + if input_image_end is not None: + mode = "interpolate" + image2 = F.to_tensor(input_image_end) * 2 - 1 + frame_tensor2 = image2[None].to(self.device) + frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0) + frame_tensor = frame_tensor[None] + + if mode == "interpolate": + layer_masks = torch.zeros((1, self.layer_capacity, 2, 1, self.H, self.W), dtype=torch.bool) + else: + layer_masks = torch.zeros((1, self.layer_capacity, 1, 1, self.H, self.W), dtype=torch.bool) + for layer_idx in range(self.layer_capacity): + if args_layer_masks[layer_idx] is not None: + mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5 + layer_masks[0, layer_idx, 0] = mask + if args_layer_masks_end[layer_idx] is not None and mode == "interpolate": + mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5 + layer_masks[0, layer_idx, 1] = mask + layer_masks = layer_masks.to(self.device) + layer_regions = layer_masks * frame_tensor[:, None] + layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=self.device) + motion_scores = torch.tensor([args_layer_scores], dtype=self.weight_dtype, device=self.device) + layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=self.device) + + sketch = torch.ones((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype) + for layer_idx in range(self.layer_capacity): + sketch_path = args_layer_sketches[layer_idx] + if sketch_path is not None: + video_reader = decord.VideoReader(sketch_path) + assert len(video_reader) == self.L, f"Input the length of sketch sequence should match the video length." + video_frames = video_reader.get_batch(range(self.L)).asnumpy() + sketch_values = [F.to_tensor(self.transforms(Image.fromarray(frame))) for frame in video_frames] + sketch_values = torch.stack(sketch_values) * 2 - 1 + sketch[0, layer_idx] = sketch_values + sketch = sketch.to(self.device) + + heatmap = torch.zeros((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype) + heatmap[:, :, :, 0] -= 1 + trajectory = [] + traj_layer_index = [] + for layer_idx in range(self.layer_capacity): + tracking_points = args_layer_tracking_points[layer_idx] + if args_layer_statics[layer_idx]: + # generate pseudo trajectory for static layers + temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy() + valid_flag = temp_layer_mask[self.sample_grid[:, 0, 1], self.sample_grid[:, 0, 0]] + valid_grid = self.sample_grid[valid_flag] # [F, N, 2] + trajectory.extend(list(valid_grid)) + traj_layer_index.extend([layer_idx] * valid_grid.shape[0]) + else: + for temp_track in tracking_points: + if len(temp_track) > 1: + x = [point[0] for point in temp_track] + y = [point[1] for point in temp_track] + t = np.linspace(0, 1, len(temp_track)) + fx = PchipInterpolator(t, x) + fy = PchipInterpolator(t, y) + t_new = np.linspace(0, 1, self.L) + x_new = fx(t_new) + y_new = fy(t_new) + temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32) + trajectory.append(temp_traj) + traj_layer_index.append(layer_idx) + elif len(temp_track) == 1: + trajectory.append(np.array(temp_track * self.L)) + traj_layer_index.append(layer_idx) + + trajectory = np.stack(trajectory) + trajectory = np.transpose(trajectory, (1, 0, 2)) + traj_layer_index = np.array(traj_layer_index) + heatmap = generate_gaussian_heatmap(trajectory, self.W, self.H, traj_layer_index, self.layer_capacity, offset=True) + heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w") + graymap, offset = heatmap[:, :1], heatmap[:, 1:] + graymap = graymap / 255. + rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2) + rad_max = torch.max(rad) + epsilon = 1e-5 + offset = offset / (rad_max + epsilon) + graymap = graymap * 2 - 1 + heatmap = torch.cat([graymap, offset], dim=1) + heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity) + heatmap = heatmap[None] + heatmap = heatmap.to(self.device) + + sample = self.pipeline( + prompt, + self.L, + self.H, + self.W, + frame_tensor, + layer_masks = layer_masks, + layer_regions = layer_regions, + layer_static = layer_static, + motion_scores = motion_scores, + sketch = sketch, + trajectory = heatmap, + layer_validity = layer_validity, + num_inference_steps = num_inference_steps, + guidance_scale = guidance_scale, + guidance_rescale = 0.7, + negative_prompt = n_prompt, + num_videos_per_prompt = 1, + eta = 1.0, + generator = self.generator, + fps = 24, + mode = mode, + weight_dtype = self.weight_dtype, + output_type = "tensor", + ).videos + output_video_path = os.path.join(self.savedir, "video.mp4") + save_videos_grid(sample, output_video_path, fps=8) + output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4") + vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool) + for traj_idx in range(trajectory.shape[1]): + if not args_layer_statics[traj_layer_index[traj_idx]]: + vis_traj_flag[traj_idx] = True + vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag]) + save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10) + return output_video_path, output_video_traj_path + + +def update_layer_region(image, layer_mask): + if image is None or layer_mask is None: + return None, False + layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float() + image = F.to_tensor(image) + layer_region = image * layer_mask_tensor + layer_region = F.to_pil_image(layer_region) + layer_region.putalpha(layer_mask) + return layer_region, True + +def control_layers(control_type): + if control_type == "score": + return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) + elif control_type == "trajectory": + return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False) + else: + return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) + +def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask): + first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float() + first_frame = F.to_tensor(first_frame) + first_region = first_frame * first_mask_tensor + first_region = F.to_pil_image(first_region) + first_region.putalpha(first_mask) + transparent_background = first_region.convert('RGBA') + + if last_frame is not None and last_mask is not None: + last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float() + last_frame = F.to_tensor(last_frame) + last_region = last_frame * last_mask_tensor + last_region = F.to_pil_image(last_region) + last_region.putalpha(last_mask) + transparent_background_end = last_region.convert('RGBA') + + width, height = transparent_background.size + transparent_layer = np.zeros((height, width, 4)) + for track in tracking_points: + if len(track) > 1: + for i in range(len(track)-1): + start_point = np.array(track[i], dtype=np.int32) + end_point = np.array(track[i+1], dtype=np.int32) + vx = end_point[0] - start_point[0] + vy = end_point[1] - start_point[1] + arrow_length = max(np.sqrt(vx**2 + vy**2), 1) + if i == len(track)-2: + cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length) + else: + cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,) + elif len(track) == 1: + cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1) + transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8)) + trajectory_map = Image.alpha_composite(transparent_background, transparent_layer) + if last_frame is not None and last_mask is not None: + trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer) + else: + trajectory_map_end = None + return trajectory_map, trajectory_map_end + +def add_drag(layer_idx): + global layer_tracking_points + tracking_points = layer_tracking_points[layer_idx].value + tracking_points.append([]) + return + +def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask): + global layer_tracking_points + tracking_points = layer_tracking_points[layer_idx].value + tracking_points.pop() + trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) + return trajectory_map, trajectory_map_end + +def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask): + global layer_tracking_points + tracking_points = layer_tracking_points[layer_idx].value + tracking_points[-1].pop() + trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) + return trajectory_map, trajectory_map_end + +def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData + print(f"You selected {evt.value} at {evt.index} from {evt.target}") + global layer_tracking_points + tracking_points = layer_tracking_points[layer_idx].value + tracking_points[-1].append(evt.index) + trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) + return trajectory_map, trajectory_map_end + +def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask): + global layer_tracking_points + layer_tracking_points[layer_idx].value = [[]] + tracking_points = layer_tracking_points[layer_idx].value + trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) + return trajectory_map, trajectory_map_end + +def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask): + if tracking_path is None: + layer_region, _ = update_layer_region(first_frame, first_mask) + layer_region_end, _ = update_layer_region(last_frame, last_mask) + return layer_region, layer_region_end + + global layer_tracking_points + with open(tracking_path, "r") as f: + tracking_points = json.load(f) + layer_tracking_points[layer_idx].value = tracking_points + trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask) + return trajectory_map, trajectory_map_end + +def reset_all_controls(): + global layer_tracking_points + outputs = [] + # Reset tracking points states + for layer_idx in range(LAYER_CAPACITY): + layer_tracking_points[layer_idx].value = [[]] + + # Reset global components + outputs.extend([ + "an anime scene.", # text prompt + "", # negative text prompt + 50, # inference steps + 7.5, # guidance scale + 42, # seed + None, # input image + None, # input image end + None, # output video + None, # output video with trajectory + ]) + # Reset layer controls visibility + outputs.extend([None] * LAYER_CAPACITY) # layer masks + outputs.extend([None] * LAYER_CAPACITY) # layer masks end + outputs.extend([None] * LAYER_CAPACITY) # layer regions + outputs.extend([None] * LAYER_CAPACITY) # layer regions end + outputs.extend(["sketch"] * LAYER_CAPACITY) # layer controls + outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)]) # layer score controls + outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)]) # layer trajectory control 4 buttons + outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)]) # layer trajectory file + outputs.extend([None] * LAYER_CAPACITY) # layer sketch controls + outputs.extend([False] * LAYER_CAPACITY) # layer validity + outputs.extend([False] * LAYER_CAPACITY) # layer statics + return outputs + +if __name__ == "__main__": + with gr.Blocks() as demo: + gr.Markdown("""

LayerAnimate: Layer-level Control for Animation


""") + + gr.Markdown("""Gradio Demo for LayerAnimate: Layer-level Control for Animation.
+ Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate
+ The template is inspired by Framer.""") + + gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960) + + gr.Markdown("""## Usage:
+ 1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.
+ 2. Upload frames in the right column.
+   1.1. Upload the first frame.
+   1.2. (Optional) Upload the last frame.
+ 3. Input layer-level controls in the left column.
+   2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.
+   2.2. Choose a control type from "motion score", "trajectory" and "sketch".
+   2.3. For trajectory control, you can draw trajectories on layer regions.
+     2.3.1. Click "Add New Trajectory" to add a new trajectory.
+     2.3.2. Click "Reset" to reset all trajectories.
+     2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.
+     2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.
+     2.3.5. Or upload a trajectory file in json format, we provide examples below.
+   2.4. For sketch control, you can upload a sketch video.
+ 4. We provide four layers for you to control, and it is not necessary to use all of them.
+ 5. Click "Run" button to generate videos.
+ 6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**
+ """) + + layeranimate = LayerAnimate() + layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)] + layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)] + layer_masks = [] + layer_masks_end = [] + layer_regions = [] + layer_regions_end = [] + layer_controls = [] + layer_score_controls = [] + layer_traj_controls = [] + layer_traj_files = [] + layer_sketch_controls = [] + layer_statics = [] + layer_valids = [] + + with gr.Row(): + with gr.Column(scale=1): + for layer_idx in range(LAYER_CAPACITY): + with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False): + gr.Markdown("""
Layer Masks
""") + gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.") + with gr.Row(): + with gr.Column(): + layer_masks.append(gr.Image( + label="Layer Mask for First Frame", + height=320, + width=512, + image_mode="L", + type="pil", + )) + + with gr.Column(): + layer_masks_end.append(gr.Image( + label="Layer Mask for Last Frame", + height=320, + width=512, + image_mode="L", + type="pil", + )) + gr.Markdown("""
Layer Regions
""") + with gr.Row(): + with gr.Column(): + layer_regions.append(gr.Image( + label="Layer Region for First Frame", + height=320, + width=512, + image_mode="RGBA", + type="pil", + # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)), + )) + + with gr.Column(): + layer_regions_end.append(gr.Image( + label="Layer Region for Last Frame", + height=320, + width=512, + image_mode="RGBA", + type="pil", + # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)), + )) + layer_controls.append( + gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch") + ) + layer_score_controls.append( + gr.Number(label="Motion Score", value=-1, visible=False) + ) + layer_traj_controls.append( + [ + gr.Button(value="Add New Trajectory", visible=False), + gr.Button(value="Reset", visible=False), + gr.Button(value="Delete Last Step", visible=False), + gr.Button(value="Delete Last Trajectory", visible=False), + ] + ) + layer_traj_files.append( + gr.File(label="Trajectory File", visible=False) + ) + layer_sketch_controls.append( + gr.Video(label="Sketch", height=320, width=512, visible=True) + ) + layer_controls[layer_idx].change( + fn=control_layers, + inputs=layer_controls[layer_idx], + outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]] + ) + with gr.Row(): + layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?")) + layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?")) + + with gr.Column(scale=1): + pretrained_model_path = gr.Dropdown( + label="Pretrained Model", + choices=[ + "None", + "checkpoints/LayerAnimate-Mix", + ], + value="None", + ) + text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.") + text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="") + with gr.Row(): + num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000) + guidance_scale = gr.Number(label="Guidance Scale", value=7.5) + seed = gr.Number(label="Seed", value=42) + with gr.Row(): + input_image = gr.Image( + label="First Frame", + height=320, + width=512, + type="pil", + ) + input_image_end = gr.Image( + label="Last Frame", + height=320, + width=512, + type="pil", + ) + run_button = gr.Button(value="Run") + with gr.Row(): + output_video = gr.Video( + label="Output Video", + height=320, + width=512, + ) + output_video_traj = gr.Video( + label="Output Video with Trajectory", + height=320, + width=512, + ) + clear_button = gr.Button(value="Clear") + + with gr.Row(): + gr.Markdown(""" + ## Citation + ```bibtex + @article{yang2025layeranimate, + author = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang}, + title = {LayerAnimate: Layer-level Control for Animation}, + journal = {arXiv preprint arXiv:2501.08295}, + year = {2025}, + } + ``` + """) + + pretrained_model_path.input(layeranimate.set_model, pretrained_model_path, pretrained_model_path) + input_image.upload(layeranimate.upload_image, input_image, input_image) + input_image_end.upload(layeranimate.upload_image, input_image_end, input_image_end) + for i in range(LAYER_CAPACITY): + layer_masks[i].upload(layeranimate.upload_image, layer_masks[i], layer_masks[i]) + layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]]) + layer_masks_end[i].upload(layeranimate.upload_image, layer_masks_end[i], layer_masks_end[i]) + layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]]) + layer_traj_controls[i][0].click(add_drag, layer_indices[i], None) + layer_traj_controls[i][1].click( + reset_states, + [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + layer_traj_controls[i][2].click( + delete_last_step, + [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + layer_traj_controls[i][3].click( + delete_last_drag, + [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + layer_traj_files[i].change( + upload_tracking_points, + [layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + layer_regions[i].select( + add_tracking_points, + [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + layer_regions_end[i].select( + add_tracking_points, + [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]], + [layer_regions[i], layer_regions_end[i]] + ) + run_button.click( + layeranimate.run, + [input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale, + *layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics], + [output_video, output_video_traj] + ) + clear_button.click( + reset_all_controls, + [], + [ + text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed, + input_image, input_image_end, output_video, output_video_traj, + *layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end, + *layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files, + *layer_sketch_controls, *layer_valids, *layer_statics + ] + ) + examples = gr.Examples( + examples=[ + [ + "__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg", + "score", "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None, None, True, False, + "score", "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None, None, True, False, + "trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1, "__assets__/demos/demo_3/trajectory.json", None, True, False, + "sketch", "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1, None, "__assets__/demos/demo_3/sketch.mp4", True, False, + 52 + ], + [ + "__assets__/demos/demo_4/first_frame.jpg", None, + "score", "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None, None, True, True, + "trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1, "__assets__/demos/demo_4/trajectory.json", None, True, False, + "sketch", "__assets__/demos/demo_4/layer_2.jpg", None, -1, None, "__assets__/demos/demo_4/sketch.mp4", True, False, + "score", None, None, -1, None, None, False, False, + 42 + ], + [ + "__assets__/demos/demo_5/first_frame.jpg", None, + "sketch", "__assets__/demos/demo_5/layer_0.jpg", None, -1, None, "__assets__/demos/demo_5/sketch.mp4", True, False, + "trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None, True, False, + "score", None, None, -1, None, None, False, False, + "score", None, None, -1, None, None, False, False, + 47 + ], + ], + inputs=[ + input_image, input_image_end, + layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0], + layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1], + layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2], + layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3], + seed + ], + ) + demo.launch() \ No newline at end of file diff --git a/lvdm/basics.py b/lvdm/basics.py new file mode 100644 index 0000000000000000000000000000000000000000..cdc35f8f848da706dbad8f043a475d761e8df289 --- /dev/null +++ b/lvdm/basics.py @@ -0,0 +1,100 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + +import torch.nn as nn +from .utils import instantiate_from_config + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def nonlinearity(type='silu'): + if type == 'silu': + return nn.SiLU() + elif type == 'leaky_relu': + return nn.LeakyReLU() + + +class GroupNormSpecific(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def normalization(channels, num_groups=32): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNormSpecific(num_groups, channels) + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} \ No newline at end of file diff --git a/lvdm/common.py b/lvdm/common.py new file mode 100644 index 0000000000000000000000000000000000000000..55a150b618e275f01d3a59ad9c7579176c4ea1b8 --- /dev/null +++ b/lvdm/common.py @@ -0,0 +1,94 @@ +import math +from inspect import isfunction +import torch +from torch import nn +import torch.distributed as dist + + +def gather_data(data, return_np=True): + ''' gather data from multiple processes to one list ''' + data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())] + dist.all_gather(data_list, data) # gather not supported with NCCL + if return_np: + data_list = [data.cpu().numpy() for data in data_list] + return data_list + +def autocast(f): + def do_autocast(*args, **kwargs): + with torch.cuda.amp.autocast(enabled=True, + dtype=torch.get_autocast_gpu_dtype(), + cache_enabled=torch.is_autocast_cache_enabled()): + return f(*args, **kwargs) + return do_autocast + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + +def exists(val): + return val is not None + +def identity(*args, **kwargs): + return nn.Identity() + +def uniq(arr): + return{el: True for el in arr}.keys() + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + +def isimage(x): + if not isinstance(x,torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + +def shape_to_str(x): + shape_str = "x".join([str(x) for x in x.shape]) + return shape_str + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + +ckpt = torch.utils.checkpoint.checkpoint +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + return ckpt(func, *inputs, use_reentrant=False) + else: + return func(*inputs) \ No newline at end of file diff --git a/lvdm/models/autoencoder.py b/lvdm/models/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..9f3ff37a5d32450cc995ba97638b60358b3f2ce9 --- /dev/null +++ b/lvdm/models/autoencoder.py @@ -0,0 +1,143 @@ +import os +from functools import partial +from dataclasses import dataclass + +import torch +import numpy as np +from einops import rearrange +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint +from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models import ModelMixin +from diffusers.utils import BaseOutput + +from ..modules.ae_modules import Encoder, Decoder +from ..modules.ae_dualref_modules import VideoDecoder +from ..utils import instantiate_from_config + + +@dataclass +class DecoderOutput(BaseOutput): + """ + Output of decoding method. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Decoded output sample of the model. Output of the last layer of the model. + """ + + sample: torch.FloatTensor + + +@dataclass +class AutoencoderKLOutput(BaseOutput): + """ + Output of AutoencoderKL encoding method. + + Args: + latent_dist (`DiagonalGaussianDistribution`): + Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. + `DiagonalGaussianDistribution` allows for sampling latents from the distribution. + """ + + latent_dist: "DiagonalGaussianDistribution" + + +class AutoencoderKL(ModelMixin, ConfigMixin): + @register_to_config + def __init__(self, + ddconfig, + embed_dim, + image_key="image", + input_dim=4, + use_checkpoint=False, + ): + super().__init__() + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + assert ddconfig["double_z"] + self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim + self.input_dim = input_dim + self.use_checkpoint = use_checkpoint + + def encode(self, x, return_hidden_states=False, **kwargs): + if return_hidden_states: + h, hidden = self.encoder(x, return_hidden_states) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return AutoencoderKLOutput(latent_dist=posterior), hidden + else: + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return AutoencoderKLOutput(latent_dist=posterior) + + def decode(self, z, **kwargs): + if len(kwargs) == 0: ## use the original decoder in AutoencoderKL + z = self.post_quant_conv(z) + dec = self.decoder(z, **kwargs) ##change for SVD decoder by adding **kwargs + return dec + + def forward(self, input, sample_posterior=True, **additional_decode_kwargs): + input_tuple = (input, ) + forward_temp = partial(self._forward, sample_posterior=sample_posterior, **additional_decode_kwargs) + return checkpoint(forward_temp, input_tuple, self.parameters(), self.use_checkpoint) + + + def _forward(self, input, sample_posterior=True, **additional_decode_kwargs): + posterior = self.encode(input)[0] + if sample_posterior: + z = posterior.sample() + else: + z = posterior.mode() + dec = self.decode(z, **additional_decode_kwargs) + ## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256]) + return dec, posterior + + def get_input(self, batch, k): + x = batch[k] + if x.dim() == 5 and self.input_dim == 4: + b,c,t,h,w = x.shape + self.b = b + self.t = t + x = rearrange(x, 'b c t h w -> (b t) c h w') + + return x + + def get_last_layer(self): + return self.decoder.conv_out.weight + + +class AutoencoderKL_Dualref(AutoencoderKL): + @register_to_config + def __init__(self, + ddconfig, + embed_dim, + image_key="image", + input_dim=4, + use_checkpoint=False, + ): + super().__init__(ddconfig, embed_dim, image_key, input_dim, use_checkpoint) + self.decoder = VideoDecoder(**ddconfig) + + def _forward(self, input, batch_size, sample_posterior=True, **additional_decode_kwargs): + posterior, hidden_states = self.encode(input, return_hidden_states=True) + + hidden_states_first_last = [] + ### use only the first and last hidden states + for hid in hidden_states: + hid = rearrange(hid, '(b t) c h w -> b c t h w', b=batch_size) + hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) + hidden_states_first_last.append(hid_new) + + if sample_posterior: + z = posterior[0].sample() + else: + z = posterior[0].mode() + dec = self.decode(z, ref_context=hidden_states_first_last, **additional_decode_kwargs) + ## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256]) + return dec, posterior \ No newline at end of file diff --git a/lvdm/models/condition.py b/lvdm/models/condition.py new file mode 100644 index 0000000000000000000000000000000000000000..79dfd51b82368af9488d3b9cacb7b86f66ddfd77 --- /dev/null +++ b/lvdm/models/condition.py @@ -0,0 +1,477 @@ +import math +import torch +import torch.nn as nn +from torchvision.transforms import functional as F +import open_clip +from torch.utils.checkpoint import checkpoint +from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models import ModelMixin +from ..common import autocast +from ..utils import count_params + + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + @property + def device(self): + return next(self.parameters()).device + + @property + def dtype(self): + return next(self.parameters()).dtype + +class IdentityEncoder(AbstractEncoder): + def encode(self, x): + return x + + +class ClassEmbedder(nn.Module): + def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): + super().__init__() + self.key = key + self.embedding = nn.Embedding(n_classes, embed_dim) + self.n_classes = n_classes + self.ucg_rate = ucg_rate + + def forward(self, batch, key=None, disable_dropout=False): + if key is None: + key = self.key + # this is for use in crossattn + c = batch[key][:, None] + if self.ucg_rate > 0. and not disable_dropout: + mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) + c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) + c = c.long() + c = self.embedding(c) + return c + + def get_unconditional_conditioning(self, bs, device="cuda"): + uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) + uc = torch.ones((bs,), device=device) * uc_class + uc = {self.key: uc} + return uc + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class FrozenT5Embedder(AbstractEncoder): + """Uses the T5 transformer encoder for text""" + + def __init__(self, version="google/t5-v1_1-large", max_length=77, + freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl + super().__init__() + self.tokenizer = T5Tokenizer.from_pretrained(version) + self.transformer = T5EncoderModel.from_pretrained(version) + self.max_length = max_length # TODO: typical value? + if freeze: + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +class FrozenCLIPEmbedder(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + LAYERS = [ + "last", + "pooled", + "hidden" + ] + + def __init__(self, version="openai/clip-vit-large-patch14", max_length=77, + freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 + super().__init__() + assert layer in self.LAYERS + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + self.layer_idx = layer_idx + if layer == "hidden": + assert layer_idx is not None + assert 0 <= abs(layer_idx) <= 12 + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden") + if self.layer == "last": + z = outputs.last_hidden_state + elif self.layer == "pooled": + z = outputs.pooler_output[:, None, :] + else: + z = outputs.hidden_states[self.layer_idx] + return z + + def encode(self, text): + return self(text) + + +class FrozenOpenCLIPEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP transformer encoder for text + """ + LAYERS = [ + # "pooled", + "last", + "penultimate" + ] + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", max_length=77, + freeze=True, layer="penultimate"): + super().__init__() + assert layer in self.LAYERS + model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) + del model.visual + self.model = model + + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "last": + self.layer_idx = 0 + elif self.layer == "penultimate": + self.layer_idx = 1 + else: + raise NotImplementedError() + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + tokens = open_clip.tokenize(text) ## all clip models use 77 as context length + z = self.encode_with_transformer(tokens.to(self.device)) + return z + + def encode_with_transformer(self, text): + x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] + x = x + self.model.positional_embedding + x = x.permute(1, 0, 2) # NLD -> LND + x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.model.ln_final(x) + return x + + def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): + for i, r in enumerate(self.model.transformer.resblocks): + if i == len(self.model.transformer.resblocks) - self.layer_idx: + break + if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(r, x, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x + + def encode(self, text): + return self(text) + + +class FrozenOpenCLIPImageEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP vision transformer encoder for images + """ + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", max_length=77, + freeze=True, layer="pooled", antialias=True, ucg_rate=0.): + super().__init__() + model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), + pretrained=version, ) + del model.transformer + self.model = model + self.preprocess_val = preprocess_val + # self.mapper = torch.nn.Linear(1280, 1024) + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "penultimate": + raise NotImplementedError() + self.layer_idx = 1 + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + self.ucg_rate = ucg_rate + + def preprocess(self, x): + # normalize to [0,1] + x = F.resize(x, (224, 224), interpolation=F.InterpolationMode.BICUBIC, antialias=self.antialias) + x = (x + 1.) / 2. + # renormalize according to clip + x = F.normalize(x, mean=self.mean, std=self.std) + return x + + def freeze(self): + self.model = self.model.eval() + for param in self.model.parameters(): + param.requires_grad = False + + @autocast + def forward(self, image, no_dropout=False): + z = self.encode_with_vision_transformer(image) + if self.ucg_rate > 0. and not no_dropout: + z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z + return z + + def encode_with_vision_transformer(self, img): + img = self.preprocess(img) + x = self.model.visual(img) + return x + + def encode(self, text): + return self(text) + +class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder): + """ + Uses the OpenCLIP vision transformer encoder for images + """ + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", + freeze=True, layer="pooled", antialias=True): + super().__init__() + model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), + pretrained=version, ) + del model.transformer + self.model = model + self.preprocess_val = preprocess_val + + if freeze: + self.freeze() + self.layer = layer + if self.layer == "penultimate": + raise NotImplementedError() + self.layer_idx = 1 + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + + + def preprocess(self, x): + # normalize to [0,1] + x = F.resize(x, (224, 224), interpolation=F.InterpolationMode.BICUBIC, antialias=self.antialias) + x = (x + 1.) / 2. + # renormalize according to clip + x = F.normalize(x, mean=self.mean, std=self.std) + return x + + def freeze(self): + self.model = self.model.eval() + for param in self.model.parameters(): + param.requires_grad = False + + def forward(self, image, no_dropout=False): + ## image: b c h w + z = self.encode_with_vision_transformer(image) + return z + + def encode_with_vision_transformer(self, x): + x = self.preprocess(x) + + # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 + if self.model.visual.input_patchnorm: + # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') + x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1]) + x = x.permute(0, 2, 4, 1, 3, 5) + x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1) + x = self.model.visual.patchnorm_pre_ln(x) + x = self.model.visual.conv1(x) + else: + x = self.model.visual.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + + # class embeddings and positional embeddings + x = torch.cat( + [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.model.visual.positional_embedding.to(x.dtype) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + x = self.model.visual.patch_dropout(x) + x = self.model.visual.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.model.visual.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + return x + +class FrozenCLIPT5Encoder(AbstractEncoder): + def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", + clip_max_length=77, t5_max_length=77): + super().__init__() + self.clip_encoder = FrozenCLIPEmbedder(clip_version, max_length=clip_max_length) + self.t5_encoder = FrozenT5Embedder(t5_version, max_length=t5_max_length) + print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " + f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.") + + def encode(self, text): + return self(text) + + def forward(self, text): + clip_z = self.clip_encoder.encode(text) + t5_z = self.t5_encoder.encode(text) + return [clip_z, t5_z] + + +# FFN +def FeedForward(dim, mult=4): + inner_dim = int(dim * mult) + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim, bias=False), + nn.GELU(), + nn.Linear(inner_dim, dim, bias=False), + ) + + +def reshape_tensor(x, heads): + bs, length, width = x.shape + #(bs, length, width) --> (bs, length, n_heads, dim_per_head) + x = x.view(bs, length, heads, -1) + # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) + x = x.transpose(1, 2) + # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) + x = x.reshape(bs, heads, length, -1) + return x + + +class PerceiverAttention(nn.Module): + def __init__(self, *, dim, dim_head=64, heads=8): + super().__init__() + self.scale = dim_head**-0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + + def forward(self, x, latents): + """ + Args: + x (torch.Tensor): image features + shape (b, n1, D) + latent (torch.Tensor): latent features + shape (b, n2, D) + """ + x = self.norm1(x) + latents = self.norm2(latents) + + b, l, _ = latents.shape + + q = self.to_q(latents) + kv_input = torch.cat((x, latents), dim=-2) + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + out = out.permute(0, 2, 1, 3).reshape(b, l, -1) + + return self.to_out(out) + + +class Resampler(ModelMixin, ConfigMixin): + @register_to_config + def __init__( + self, + dim=1024, + depth=8, + dim_head=64, + heads=16, + num_queries=8, + embedding_dim=768, + output_dim=1024, + ff_mult=4, + video_length=None, # using frame-wise version or not + ): + super().__init__() + ## queries for a single frame / image + self.num_queries = num_queries + self.video_length = video_length + + ## queries for each frame + if video_length is not None: + num_queries = num_queries * video_length + + self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) + self.proj_in = nn.Linear(embedding_dim, dim) + self.proj_out = nn.Linear(dim, output_dim) + self.norm_out = nn.LayerNorm(output_dim) + + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + nn.ModuleList( + [ + PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), + FeedForward(dim=dim, mult=ff_mult), + ] + ) + ) + + def forward(self, x): + latents = self.latents.repeat(x.size(0), 1, 1) ## B (T L) C + x = self.proj_in(x) + + for attn, ff in self.layers: + latents = attn(x, latents) + latents + latents = ff(latents) + latents + + latents = self.proj_out(latents) + latents = self.norm_out(latents) # B L C or B (T L) C + + return latents \ No newline at end of file diff --git a/lvdm/models/controlnet.py b/lvdm/models/controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..a0361c85db2c2f61240f58c6f6b95e489f565ee1 --- /dev/null +++ b/lvdm/models/controlnet.py @@ -0,0 +1,500 @@ +from typing import Any, Dict, List, Optional, Tuple, Union +from einops import rearrange, repeat +import numpy as np +from functools import partial +import torch +from torch import nn +from torch.nn import functional as F +from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock +from ..basics import zero_module, conv_nd +from ..modules.attention import SpatialTransformer, TemporalTransformer +from ..common import checkpoint + +from diffusers import __version__ +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from diffusers.models.model_loading_utils import load_state_dict +from diffusers.utils import ( + SAFETENSORS_WEIGHTS_NAME, + WEIGHTS_NAME, + logging, + _get_model_file, + _add_variant +) +from omegaconf import ListConfig, DictConfig, OmegaConf + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class ResBlock_v2(nn.Module): + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + dims=2, + use_checkpoint=False, + use_conv=False, + up=False, + down=False, + use_temporal_conv=False, + tempspatial_aware=False + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_temporal_conv = use_temporal_conv + + self.in_layers = nn.Sequential( + nn.GroupNorm(32, channels), + nn.SiLU(), + zero_module(conv_nd(dims, channels, self.out_channels, 3, padding=1)), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + if self.use_temporal_conv: + self.temopral_conv = TemporalConvBlock( + self.out_channels, + self.out_channels, + dropout=0.1, + spatial_aware=tempspatial_aware + ) + + def forward(self, x, batch_size=None): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :return: an [N x C x ...] Tensor of outputs. + """ + input_tuple = (x, ) + if batch_size: + forward_batchsize = partial(self._forward, batch_size=batch_size) + return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) + return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) + + def _forward(self, x, batch_size=None): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + h = self.skip_connection(x) + h + + if self.use_temporal_conv and batch_size: + h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) + h = self.temopral_conv(h) + h = rearrange(h, 'b c t h w -> (b t) c h w') + return h + + +class TrajectoryEncoder(nn.Module): + def __init__(self, cin, time_embed_dim, channels=[320, 640, 1280, 1280], nums_rb=3, + dropout=0.0, use_checkpoint=False, tempspatial_aware=False, temporal_conv=False): + super(TrajectoryEncoder, self).__init__() + # self.unshuffle = nn.PixelUnshuffle(8) + self.channels = channels + self.nums_rb = nums_rb + self.body = [] + # self.conv_out = [] + for i in range(len(channels)): + for j in range(nums_rb): + if (i != 0) and (j == 0): + self.body.append( + ResBlock_v2(channels[i - 1], time_embed_dim, dropout, + out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint, + tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv, + down=True + ) + ) + else: + self.body.append( + ResBlock_v2(channels[i], time_embed_dim, dropout, + out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint, + tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv, + down=False + ) + ) + self.body.append( + ResBlock_v2(channels[-1], time_embed_dim, dropout, + out_channels=channels[-1], dims=2, use_checkpoint=use_checkpoint, + tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv, + down=True + ) + ) + self.body = nn.ModuleList(self.body) + self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) + self.conv_out = zero_module(conv_nd(2, channels[-1], channels[-1], 3, 1, 1)) + + def forward(self, x, batch_size=None): + # unshuffle + # x = self.unshuffle(x) + # extract features + # features = [] + x = self.conv_in(x) + for i in range(len(self.channels)): + for j in range(self.nums_rb): + idx = i * self.nums_rb + j + x = self.body[idx](x, batch_size) + x = self.body[-1](x, batch_size) + out = self.conv_out(x) + return out + + +class ControlNet(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0.0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + context_dim=None, + use_scale_shift_norm=False, + resblock_updown=False, + num_heads=-1, + num_head_channels=-1, + transformer_depth=1, + use_linear=False, + use_checkpoint=False, + temporal_conv=False, + tempspatial_aware=False, + temporal_attention=True, + use_relative_position=True, + use_causal_attention=False, + temporal_length=None, + addition_attention=False, + temporal_selfatt_only=True, + image_cross_attention=False, + image_cross_attention_scale_learnable=False, + default_fps=4, + fps_condition=False, + ignore_noisy_latents=True, + conditioning_channels=4, + ): + super().__init__() + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.temporal_attention = temporal_attention + time_embed_dim = model_channels * 4 + self.use_checkpoint = use_checkpoint + temporal_self_att_only = True + self.addition_attention = addition_attention + self.temporal_length = temporal_length + self.image_cross_attention = image_cross_attention + self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable + self.default_fps = default_fps + self.fps_condition = fps_condition + self.ignore_noisy_latents = ignore_noisy_latents + + ## Time embedding blocks + self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) + + if fps_condition: + self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) + nn.init.zeros_(self.fps_embedding.linear_2.weight) + nn.init.zeros_(self.fps_embedding.linear_2.bias) + + # self.cond_embedding = TrajectoryEncoder( + # cin=conditioning_channels, time_embed_dim=time_embed_dim, channels=trajectory_channels, nums_rb=3, + # dropout=dropout, use_checkpoint=use_checkpoint, tempspatial_aware=tempspatial_aware, temporal_conv=False + # ) + self.cond_embedding = zero_module(conv_nd(dims, conditioning_channels, model_channels, 3, padding=1)) + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) + ] + ) + + ## Output Block + self.downsample_output = nn.ModuleList( + [ + nn.Sequential( + nn.GroupNorm(32, model_channels), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, model_channels, 3, padding=1)) + ) + ] + ) + + if self.addition_attention: + self.init_attn = TimestepEmbedSequential( + TemporalTransformer( + model_channels, + n_heads=8, + d_head=num_head_channels, + depth=transformer_depth, + context_dim=context_dim, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=False, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock(ch, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + video_length=temporal_length, image_cross_attention=self.image_cross_attention, + image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self.downsample_output.append( + nn.Sequential( + nn.GroupNorm(32, ch), + nn.SiLU(), + zero_module(conv_nd(dims, ch, ch, 3, padding=1)) + ) + ) + if level < len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True + ) + if resblock_updown + else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ) + self.downsample_output.append( + nn.Sequential( + nn.GroupNorm(32, out_ch), + nn.SiLU(), + zero_module(conv_nd(dims, out_ch, out_ch, 3, padding=1)) + ) + ) + ch = out_ch + ds *= 2 + + def forward( + self, + noisy_latents, + timesteps, + context_text, + context_img=None, + fps=None, + condition=None, # [b, t, c, h, w] + ): + if self.ignore_noisy_latents: + noisy_latents = torch.zeros_like(noisy_latents) + + b, _, t, height, width = noisy_latents.shape + t_emb = self.time_proj(timesteps).type(noisy_latents.dtype) + emb = self.time_embed(t_emb) + + ## repeat t times for context [(b t) 77 768] & time embedding + ## check if we use per-frame image conditioning + if context_img is not None: ## decompose context into text and image + context_text = context_text.repeat_interleave(repeats=t, dim=0) + context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t) + context = torch.cat([context_text, context_img], dim=1) + else: + context = context_text.repeat_interleave(repeats=t, dim=0) + emb = emb.repeat_interleave(repeats=t, dim=0) + + ## always in shape (b n t) c h w, except for temporal layer + noisy_latents = rearrange(noisy_latents, 'b c t h w -> (b t) c h w') + condition = rearrange(condition, 'b t c h w -> (b t) c h w') + + ## combine emb + if self.fps_condition: + if fps is None: + fps = torch.tensor( + [self.default_fs] * b, dtype=torch.long, device=noisy_latents.device) + fps_emb = self.time_proj(fps).type(noisy_latents.dtype) + + fps_embed = self.fps_embedding(fps_emb) + fps_embed = fps_embed.repeat_interleave(repeats=t, dim=0) + emb = emb + fps_embed + + h = noisy_latents.type(self.dtype) + hs = [] + for id, module in enumerate(self.input_blocks): + h = module(h, emb, context=context, batch_size=b) + if id == 0: + h = h + self.cond_embedding(condition) + if self.addition_attention: + h = self.init_attn(h, emb, context=context, batch_size=b) + hs.append(h) + + guidance_feature_list = [] + for hidden, module in zip(hs, self.downsample_output): + h = module(hidden) + guidance_feature_list.append(h) + + return guidance_feature_list + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, layer_encoder_additional_kwargs={}, **kwargs): + cache_dir = kwargs.pop("cache_dir", None) + force_download = kwargs.pop("force_download", False) + proxies = kwargs.pop("proxies", None) + local_files_only = kwargs.pop("local_files_only", None) + token = kwargs.pop("token", None) + revision = kwargs.pop("revision", None) + subfolder = kwargs.pop("subfolder", None) + variant = kwargs.pop("variant", None) + use_safetensors = kwargs.pop("use_safetensors", None) + + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + + # Load config if we don't provide a configuration + config_path = pretrained_model_name_or_path + + user_agent = { + "diffusers": __version__, + "file_type": "model", + "framework": "pytorch", + } + + # load config + config, unused_kwargs, commit_hash = cls.load_config( + config_path, + cache_dir=cache_dir, + return_unused_kwargs=True, + return_commit_hash=True, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + **kwargs, + ) + + for key, value in layer_encoder_additional_kwargs.items(): + if isinstance(value, (ListConfig, DictConfig)): + config[key] = OmegaConf.to_container(value, resolve=True) + else: + config[key] = value + + # load model + model_file = None + if use_safetensors: + try: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + except IOError as e: + logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") + if not allow_pickle: + raise + logger.warning( + "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." + ) + + if model_file is None: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + model = cls.from_config(config, **unused_kwargs) + state_dict = load_state_dict(model_file, variant) + + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + print(f"Controlnet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") + return model \ No newline at end of file diff --git a/lvdm/models/layer_controlnet.py b/lvdm/models/layer_controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..bb920f72da55418c929999188c096b91f6102f52 --- /dev/null +++ b/lvdm/models/layer_controlnet.py @@ -0,0 +1,444 @@ +from typing import Any, Dict, List, Optional, Tuple, Union +from einops import rearrange, repeat +import numpy as np +from functools import partial +import torch +from torch import nn +from torch.nn import functional as F +from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock +from ..basics import zero_module, conv_nd +from ..modules.attention import SpatialTransformer, TemporalTransformer +from ..common import checkpoint + +from diffusers import __version__ +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from diffusers.models.model_loading_utils import load_state_dict +from diffusers.utils import ( + SAFETENSORS_WEIGHTS_NAME, + WEIGHTS_NAME, + logging, + _get_model_file, + _add_variant +) +from omegaconf import ListConfig, DictConfig, OmegaConf + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class ControlNetConditioningEmbedding(nn.Module): + """ + Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN + [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized + training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the + convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides + (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full + model) to encode image-space conditions ... into feature maps ..." + """ + + def __init__( + self, + conditioning_embedding_channels: int, + conditioning_channels: int = 3, + block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), + ): + super().__init__() + + self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) + + self.blocks = nn.ModuleList([]) + + for i in range(len(block_out_channels) - 1): + channel_in = block_out_channels[i] + channel_out = block_out_channels[i + 1] + self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) + self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) + + self.conv_out = zero_module( + nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) + ) + + def forward(self, conditioning): + embedding = self.conv_in(conditioning) + embedding = F.silu(embedding) + + for block in self.blocks: + embedding = block(embedding) + embedding = F.silu(embedding) + + embedding = self.conv_out(embedding) + + return embedding + + +class LayerControlNet(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0.0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + context_dim=None, + use_scale_shift_norm=False, + resblock_updown=False, + num_heads=-1, + num_head_channels=-1, + transformer_depth=1, + use_linear=False, + use_checkpoint=False, + temporal_conv=False, + tempspatial_aware=False, + temporal_attention=True, + use_relative_position=True, + use_causal_attention=False, + temporal_length=None, + addition_attention=False, + temporal_selfatt_only=True, + image_cross_attention=False, + image_cross_attention_scale_learnable=False, + default_fps=4, + fps_condition=False, + ignore_noisy_latents=True, + condition_channels={}, + control_injection_mode='add', + use_vae_for_trajectory=False, + ): + super().__init__() + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.temporal_attention = temporal_attention + time_embed_dim = model_channels * 4 + self.use_checkpoint = use_checkpoint + temporal_self_att_only = True + self.addition_attention = addition_attention + self.temporal_length = temporal_length + self.image_cross_attention = image_cross_attention + self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable + self.default_fps = default_fps + self.fps_condition = fps_condition + self.ignore_noisy_latents = ignore_noisy_latents + assert len(condition_channels) > 0, 'Condition types must be specified' + self.condition_channels = condition_channels + self.control_injection_mode = control_injection_mode + self.use_vae_for_trajectory = use_vae_for_trajectory + + ## Time embedding blocks + self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) + + if fps_condition: + self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) + nn.init.zeros_(self.fps_embedding.linear_2.weight) + nn.init.zeros_(self.fps_embedding.linear_2.bias) + + if "motion_score" in condition_channels: + if control_injection_mode == 'add': + self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1)) + elif control_injection_mode == 'concat': + self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1)) + else: + raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") + if "sketch" in condition_channels: + if control_injection_mode == 'add': + self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1)) + elif control_injection_mode == 'concat': + self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1)) + else: + raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") + if "trajectory" in condition_channels: + if control_injection_mode == 'add': + if use_vae_for_trajectory: + self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1)) + else: + self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"]) + elif control_injection_mode == 'concat': + if use_vae_for_trajectory: + self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1)) + else: + self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"]) + else: + raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) + ] + ) + + if self.addition_attention: + self.init_attn = TimestepEmbedSequential( + TemporalTransformer( + model_channels, + n_heads=8, + d_head=num_head_channels, + depth=transformer_depth, + context_dim=context_dim, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=False, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock(ch, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + video_length=temporal_length, image_cross_attention=self.image_cross_attention, + image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + + if level < len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True + ) + if resblock_updown + else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ) + ch = out_ch + ds *= 2 + + def forward( + self, + noisy_latents, + timesteps, + context_text, + context_img=None, + fps=None, + layer_latents=None, # [b, n_layer, t, c, h, w] + layer_latent_mask=None, # [b, n_layer, t, 1, h, w] + motion_scores=None, # [b, n_layer] + sketch=None, # [b, n_layer, t, c, h, w] + trajectory=None, # [b, n_layer, t, c, h, w] + ): + if self.ignore_noisy_latents: + noisy_latents_shape = list(noisy_latents.shape) + noisy_latents_shape[1] = 0 + noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype) + + b, _, t, height, width = noisy_latents.shape + n_layer = layer_latents.shape[1] + t_emb = self.time_proj(timesteps).type(noisy_latents.dtype) + emb = self.time_embed(t_emb) + + ## repeat t times for context [(b t) 77 768] & time embedding + ## check if we use per-frame image conditioning + if context_img is not None: ## decompose context into text and image + context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) + context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer) + context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t) + context = torch.cat([context_text, context_img], dim=1) + else: + context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) + emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t) + + ## always in shape (b n t) c h w, except for temporal layer + noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer) + + ## combine emb + if self.fps_condition: + if fps is None: + fps = torch.tensor( + [self.default_fs] * b, dtype=torch.long, device=noisy_latents.device) + fps_emb = self.time_proj(fps).type(noisy_latents.dtype) + + fps_embed = self.fps_embedding(fps_emb) + fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t) + emb = emb + fps_embed + + ## process conditions + layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3) + layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w') + h = torch.cat([noisy_latents, layer_condition], dim=1) + + if "motion_score" in self.condition_channels: + motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width) + motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3) + motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w') + motion_condition = self.motion_embedding(motion_condition) + if self.control_injection_mode == 'concat': + h = torch.cat([h, motion_condition], dim=1) + + if "sketch" in self.condition_channels: + sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w') + sketch_condition = self.sketch_embedding(sketch_condition) + if self.control_injection_mode == 'concat': + h = torch.cat([h, sketch_condition], dim=1) + + if "trajectory" in self.condition_channels: + traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w') + traj_condition = self.trajectory_embedding(traj_condition) + if self.control_injection_mode == 'concat': + h = torch.cat([h, traj_condition], dim=1) + + layer_features = [] + for id, module in enumerate(self.input_blocks): + h = module(h, emb, context=context, batch_size=b*n_layer) + if id == 0: + if self.control_injection_mode == 'add': + if "motion_score" in self.condition_channels: + h = h + motion_condition + if "sketch" in self.condition_channels: + h = h + sketch_condition + if "trajectory" in self.condition_channels: + h = h + traj_condition + if self.addition_attention: + h = self.init_attn(h, emb, context=context, batch_size=b*n_layer) + if SpatialTransformer in [type(m) for m in module]: + layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer)) + + return layer_features + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs): + cache_dir = kwargs.pop("cache_dir", None) + force_download = kwargs.pop("force_download", False) + proxies = kwargs.pop("proxies", None) + local_files_only = kwargs.pop("local_files_only", None) + token = kwargs.pop("token", None) + revision = kwargs.pop("revision", None) + subfolder = kwargs.pop("subfolder", None) + variant = kwargs.pop("variant", None) + use_safetensors = kwargs.pop("use_safetensors", None) + + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + + # Load config if we don't provide a configuration + config_path = pretrained_model_name_or_path + + user_agent = { + "diffusers": __version__, + "file_type": "model", + "framework": "pytorch", + } + + # load config + config, unused_kwargs, commit_hash = cls.load_config( + config_path, + cache_dir=cache_dir, + return_unused_kwargs=True, + return_commit_hash=True, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + **kwargs, + ) + + for key, value in layer_controlnet_additional_kwargs.items(): + if isinstance(value, (ListConfig, DictConfig)): + config[key] = OmegaConf.to_container(value, resolve=True) + else: + config[key] = value + + # load model + model_file = None + if use_safetensors: + try: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + except IOError as e: + logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") + if not allow_pickle: + raise + logger.warning( + "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." + ) + + if model_file is None: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + model = cls.from_config(config, **unused_kwargs) + state_dict = load_state_dict(model_file, variant) + + if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]: + state_dict.pop('input_blocks.0.0.weight') + + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") + return model \ No newline at end of file diff --git a/lvdm/models/unet.py b/lvdm/models/unet.py new file mode 100644 index 0000000000000000000000000000000000000000..669fc4a288d601d4fb1c1e59e899cce02f703a92 --- /dev/null +++ b/lvdm/models/unet.py @@ -0,0 +1,731 @@ +# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py + +from dataclasses import dataclass +import os +from os import PathLike +from typing import List, Mapping, Optional, Tuple, Union +from functools import partial +from abc import abstractmethod +from collections import OrderedDict + +import torch +import torch.nn as nn +import torch.utils.checkpoint +import torch.nn.functional as F +from einops import rearrange, repeat + +from diffusers import __version__ +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models import ModelMixin +from diffusers.utils import ( + SAFETENSORS_WEIGHTS_NAME, + WEIGHTS_NAME, + BaseOutput, + logging, + _get_model_file, + _add_variant +) +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from diffusers.models.model_loading_utils import load_state_dict + +from ..common import checkpoint +from ..basics import avg_pool_nd, conv_nd, zero_module +from ..modules.attention import SpatialTransformer, TemporalTransformer, CrossAttention +from omegaconf import ListConfig, DictConfig, OmegaConf + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None, batch_size=None, **kwargs): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb, batch_size=batch_size) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context, **kwargs) + elif isinstance(layer, TemporalTransformer): + x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) + x = layer(x, context) + x = rearrange(x, 'b c f h w -> (b f) c h w') + else: + x = layer(x) + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') + else: + x = F.interpolate(x, scale_factor=2, mode='nearest') + if self.use_conv: + x = self.conv(x) + return x + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + :param use_temporal_conv: if True, use the temporal convolution. + :param use_image_dataset: if True, the temporal parameters will not be optimized. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + use_conv=False, + up=False, + down=False, + use_temporal_conv=False, + tempspatial_aware=False + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + self.use_temporal_conv = use_temporal_conv + + self.in_layers = nn.Sequential( + nn.GroupNorm(32, channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + nn.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + nn.GroupNorm(32, self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + if self.use_temporal_conv: + self.temopral_conv = TemporalConvBlock( + self.out_channels, + self.out_channels, + dropout=0.1, + spatial_aware=tempspatial_aware + ) + + def forward(self, x, emb, batch_size=None): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + input_tuple = (x, emb) + if batch_size: + forward_batchsize = partial(self._forward, batch_size=batch_size) + return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) + return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) + + def _forward(self, x, emb, batch_size=None): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + h = self.skip_connection(x) + h + + if self.use_temporal_conv and batch_size: + h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) + h = self.temopral_conv(h) + h = rearrange(h, 'b c t h w -> (b t) c h w') + return h + + +class TemporalConvBlock(nn.Module): + """ + Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py + """ + def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False): + super(TemporalConvBlock, self).__init__() + if out_channels is None: + out_channels = in_channels + self.in_channels = in_channels + self.out_channels = out_channels + th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) + th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) + tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) + tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) + + # conv layers + self.conv1 = nn.Sequential( + nn.GroupNorm(32, in_channels), nn.SiLU(), + nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape)) + self.conv2 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) + self.conv3 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape)) + self.conv4 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) + + # zero out the last layer params,so the conv block is identity + nn.init.zeros_(self.conv4[-1].weight) + nn.init.zeros_(self.conv4[-1].bias) + + def forward(self, x): + identity = x + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + x = self.conv4(x) + + return identity + x + + +@dataclass +class UNetModelOutput(BaseOutput): + sample: torch.FloatTensor + + +class UNetModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0.0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + context_dim=None, + use_scale_shift_norm=False, + resblock_updown=False, + num_heads=-1, + num_head_channels=-1, + transformer_depth=1, + use_linear=False, + use_checkpoint=False, + temporal_conv=False, + tempspatial_aware=False, + temporal_attention=True, + use_relative_position=True, + use_causal_attention=False, + temporal_length=None, + addition_attention=False, + temporal_selfatt_only=True, + image_cross_attention=False, + image_cross_attention_scale_learnable=False, + masked_layer_fusion=False, + default_fps=4, + fps_condition=False, + ): + super().__init__() + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.temporal_attention = temporal_attention + time_embed_dim = model_channels * 4 + self.use_checkpoint = use_checkpoint + temporal_self_att_only = True + self.addition_attention = addition_attention + self.temporal_length = temporal_length + self.image_cross_attention = image_cross_attention + self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable + self.default_fps = default_fps + self.fps_condition = fps_condition + + ## Time embedding blocks + self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) + + if fps_condition: + self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) + nn.init.zeros_(self.fps_embedding.linear_2.weight) + nn.init.zeros_(self.fps_embedding.linear_2.bias) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) + ] + ) + + if self.addition_attention: + self.init_attn = TimestepEmbedSequential( + TemporalTransformer( + model_channels, + n_heads=8, + d_head=num_head_channels, + depth=transformer_depth, + context_dim=context_dim, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=False, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock(ch, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + video_length=temporal_length, image_cross_attention=self.image_cross_attention, + image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True + ) + if resblock_updown + else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers = [ + ResBlock(ch, time_embed_dim, dropout, + dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ), + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, + image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable + ) + ] + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + layers.append( + ResBlock(ch, time_embed_dim, dropout, + dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ) + + ## Middle Block + self.middle_block = TimestepEmbedSequential(*layers) + + ## Output Block + self.output_blocks = nn.ModuleList([]) + + self.masked_layer_fusion = masked_layer_fusion + if self.masked_layer_fusion: + self.masked_layer_fusion_norm_list = nn.ModuleList([]) + self.masked_layer_fusion_attn_list = nn.ModuleList([]) + self.masked_layer_fusion_out_list = nn.ModuleList([]) + self.layer_feature_block_indices = [] + + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + input_channel = ch + ich = input_block_chans.pop() + layers = [ + ResBlock(ch + ich, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if self.masked_layer_fusion and i < num_res_blocks: + self.masked_layer_fusion_norm_list.append(nn.LayerNorm(input_channel)) + self.masked_layer_fusion_attn_list.append( + CrossAttention( + query_dim=input_channel, + context_dim=ch, + dim_head=dim_head, + heads=num_heads, + use_xformers=False, + ) + ) + self.masked_layer_fusion_out_list.append( + zero_module(conv_nd(dims, input_channel, ch, 3, padding=1)) + ) + self.layer_feature_block_indices.append(len(self.output_blocks)) + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, + image_cross_attention=self.image_cross_attention, image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + + self.out = nn.Sequential( + nn.GroupNorm(32, ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + + def forward(self, x, timesteps, context_text, context_img=None, controls=None, layer_validity=None, fps=None, **kwargs): + b, _, t, _, _ = x.shape + t_emb = self.time_proj(timesteps).type(x.dtype) + emb = self.time_embed(t_emb) + + ## repeat t times for context [(b t) 77 768] & time embedding + ## check if we use per-frame image conditioning + if context_img is not None: ## decompose context into text and image + context_text = context_text.repeat_interleave(repeats=t, dim=0) + context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t) + context = torch.cat([context_text, context_img], dim=1) + else: + context = context_text.repeat_interleave(repeats=t, dim=0) + emb = emb.repeat_interleave(repeats=t, dim=0) + + ## always in shape (b t) c h w, except for temporal layer + x = rearrange(x, 'b c t h w -> (b t) c h w') + + ## combine emb + if self.fps_condition: + if fps is None: + fps = torch.tensor( + [self.default_fs] * b, dtype=torch.long, device=x.device) + fps_emb = self.time_proj(fps).type(x.dtype) + + fps_embed = self.fps_embedding(fps_emb) + fps_embed = fps_embed.repeat_interleave(repeats=t, dim=0) + emb = emb + fps_embed + + h = x.type(self.dtype) + hs = [] + for id, module in enumerate(self.input_blocks): + h = module(h, emb, context=context, batch_size=b) + if id == 0 and self.addition_attention: + h = self.init_attn(h, emb, context=context, batch_size=b) + hs.append(h) + + h = self.middle_block(h, emb, context=context, batch_size=b) + + layer_fusion_idx = 0 + for id, module in enumerate(self.output_blocks): + skip = hs.pop() + if controls is not None and len(controls) > 0 and id in self.layer_feature_block_indices: + layer_features = controls.pop() + feature_h, feature_w = layer_features.shape[-2:] + layer_features = rearrange(layer_features, 'b n t c h w -> (b t h w) n c') + frame_features = rearrange(h, '(b t) c h w -> (b t) (h w) c', b=b) + frame_features = self.masked_layer_fusion_norm_list[layer_fusion_idx](frame_features) + frame_features = rearrange(frame_features, '(b t) (h w) c -> (b t h w) 1 c', b=b, t=t, h=feature_h, w=feature_w) + fused_features = self.masked_layer_fusion_attn_list[layer_fusion_idx]( + frame_features, + layer_features, + mask=repeat(layer_validity, "b n -> (b t h w) 1 n", t=t, h=feature_h, w=feature_w) + ) + fused_features = rearrange(fused_features, '(b t h w) 1 c -> (b t) c h w', b=b, t=t, h=feature_h, w=feature_w) + fused_features = self.masked_layer_fusion_out_list[layer_fusion_idx](fused_features) + skip += fused_features + layer_fusion_idx += 1 + h = torch.cat([h, skip], dim=1) + h = module(h, emb, context=context, batch_size=b) + h = h.type(x.dtype) + y = self.out(h) + + # reshape back to (b c t h w) + y = rearrange(y, '(b t) c h w -> b c t h w', b=b) + return UNetModelOutput(sample=y) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, unet_additional_kwargs={}, **kwargs): + cache_dir = kwargs.pop("cache_dir", None) + force_download = kwargs.pop("force_download", False) + proxies = kwargs.pop("proxies", None) + local_files_only = kwargs.pop("local_files_only", None) + token = kwargs.pop("token", None) + revision = kwargs.pop("revision", None) + subfolder = kwargs.pop("subfolder", None) + variant = kwargs.pop("variant", None) + use_safetensors = kwargs.pop("use_safetensors", None) + + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + + # Load config if we don't provide a configuration + config_path = pretrained_model_name_or_path + + user_agent = { + "diffusers": __version__, + "file_type": "model", + "framework": "pytorch", + } + + # load config + config, unused_kwargs, commit_hash = cls.load_config( + config_path, + cache_dir=cache_dir, + return_unused_kwargs=True, + return_commit_hash=True, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + **kwargs, + ) + + for key, value in unet_additional_kwargs.items(): + if isinstance(value, (ListConfig, DictConfig)): + config[key] = OmegaConf.to_container(value, resolve=True) + else: + config[key] = value + + # load model + model_file = None + if use_safetensors: + try: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + except IOError as e: + logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") + if not allow_pickle: + raise + logger.warning( + "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." + ) + + if model_file is None: + model_file = _get_model_file( + pretrained_model_name_or_path, + weights_name=_add_variant(WEIGHTS_NAME, variant), + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + local_files_only=local_files_only, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + commit_hash=commit_hash, + ) + + model = cls.from_config(config, **unused_kwargs) + state_dict = load_state_dict(model_file, variant) + + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + print(f"UNetModel loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") + return model \ No newline at end of file diff --git a/lvdm/modules/ae_dualref_modules.py b/lvdm/modules/ae_dualref_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..3794142c2ad53beca17a26ed83975262bcea04a7 --- /dev/null +++ b/lvdm/modules/ae_dualref_modules.py @@ -0,0 +1,1179 @@ +#### https://github.com/Stability-AI/generative-models +from einops import rearrange, repeat +import logging +from typing import Any, Callable, Optional, Iterable, Union + +import numpy as np +import torch +import torch.nn as nn +from packaging import version +logpy = logging.getLogger(__name__) + +try: + import xformers + import xformers.ops + + XFORMERS_IS_AVAILABLE = True +except: + XFORMERS_IS_AVAILABLE = False + logpy.warning("no module 'xformers'. Processing without...") + +from .attention_svd import LinearAttention, MemoryEfficientCrossAttention +from diffusers.models.autoencoders.vae import DecoderOutput + +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm( + num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def attention(self, h_: torch.Tensor) -> torch.Tensor: + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + b, c, h, w = q.shape + q, k, v = map( + lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v) + ) + h_ = torch.nn.functional.scaled_dot_product_attention( + q, k, v + ) # scale is dim ** -0.5 per default + # compute attention + + return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) + + def forward(self, x, **kwargs): + h_ = x + h_ = self.attention(h_) + h_ = self.proj_out(h_) + return x + h_ + + +class MemoryEfficientAttnBlock(nn.Module): + """ + Uses xformers efficient implementation, + see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 + Note: this is a single-head self-attention operation + """ + + # + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.attention_op: Optional[Any] = None + + def attention(self, h_: torch.Tensor) -> torch.Tensor: + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + B, C, H, W = q.shape + q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(B, t.shape[1], 1, C) + .permute(0, 2, 1, 3) + .reshape(B * 1, t.shape[1], C) + .contiguous(), + (q, k, v), + ) + out = xformers.ops.memory_efficient_attention( + q, k, v, attn_bias=None, op=self.attention_op + ) + + out = ( + out.unsqueeze(0) + .reshape(B, 1, out.shape[1], C) + .permute(0, 2, 1, 3) + .reshape(B, out.shape[1], C) + ) + return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) + + def forward(self, x, **kwargs): + h_ = x + h_ = self.attention(h_) + h_ = self.proj_out(h_) + return x + h_ + + +class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): + def forward(self, x, context=None, mask=None, **unused_kwargs): + b, c, h, w = x.shape + x = rearrange(x, "b c h w -> b (h w) c") + out = super().forward(x, context=context, mask=mask) + out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) + return x + out + + +def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): + assert attn_type in [ + "vanilla", + "vanilla-xformers", + "memory-efficient-cross-attn", + "linear", + "none", + "memory-efficient-cross-attn-fusion", + ], f"attn_type {attn_type} unknown" + if ( + version.parse(torch.__version__) < version.parse("2.0.0") + and attn_type != "none" + ): + assert XFORMERS_IS_AVAILABLE, ( + f"We do not support vanilla attention in {torch.__version__} anymore, " + f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'" + ) + # attn_type = "vanilla-xformers" + logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + assert attn_kwargs is None + return AttnBlock(in_channels) + elif attn_type == "vanilla-xformers": + logpy.info( + f"building MemoryEfficientAttnBlock with {in_channels} in_channels..." + ) + return MemoryEfficientAttnBlock(in_channels) + elif attn_type == "memory-efficient-cross-attn": + attn_kwargs["query_dim"] = in_channels + return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) + elif attn_type == "memory-efficient-cross-attn-fusion": + attn_kwargs["query_dim"] = in_channels + return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + +class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention): + # print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs): + super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs) + self.norm = Normalize(query_dim) + nn.init.zeros_(self.to_out[0].weight) + nn.init.zeros_(self.to_out[0].bias) + + def forward(self, x, context=None, mask=None): + if self.training: + return checkpoint(self._forward, x, context, mask, use_reentrant=False) + else: + return self._forward(x, context, mask) + + def _forward( + self, + x, + context=None, + mask=None, + ): + bt, c, h, w = x.shape + h_ = self.norm(x) + h_ = rearrange(h_, "b c h w -> b (h w) c") + q = self.to_q(h_) + + + b, c, l, h, w = context.shape + context = rearrange(context, "b c l h w -> (b l) (h w) c") + k = self.to_k(context) + v = self.to_v(context) + k = rearrange(k, "(b l) d c -> b l d c", l=l) + k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2) + k = rearrange(k, "b l d c -> (b l) d c") + + v = rearrange(v, "(b l) d c -> b l d c", l=l) + v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2) + v = rearrange(v, "b l d c -> (b l) d c") + + + b, _, _ = q.shape ##actually bt + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (q, k, v), + ) + + # actually compute the attention, what we cannot get enough of + if version.parse(xformers.__version__) >= version.parse("0.0.21"): + # NOTE: workaround for + # https://github.com/facebookresearch/xformers/issues/845 + max_bs = 32768 + N = q.shape[0] + n_batches = math.ceil(N / max_bs) + out = list() + for i_batch in range(n_batches): + batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs) + out.append( + xformers.ops.memory_efficient_attention( + q[batch], + k[batch], + v[batch], + attn_bias=None, + op=self.attention_op, + ) + ) + out = torch.cat(out, 0) + else: + out = xformers.ops.memory_efficient_attention( + q, k, v, attn_bias=None, op=self.attention_op + ) + + # TODO: Use this directly in the attention operation, as a bias + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + out = self.to_out(out) + out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c) + return x + out + +class Combiner(nn.Module): + def __init__(self, ch) -> None: + super().__init__() + self.conv = nn.Conv2d(ch,ch,1,padding=0) + + nn.init.zeros_(self.conv.weight) + nn.init.zeros_(self.conv.bias) + + def forward(self, x, context): + if self.training: + return checkpoint(self._forward, x, context, use_reentrant=False) + else: + return self._forward(x, context) + + def _forward(self, x, context): + ## x: b c h w, context: b c 2 h w + b, c, l, h, w = context.shape + bt, c, h, w = x.shape + context = rearrange(context, "b c l h w -> (b l) c h w") + context = self.conv(context) + context = rearrange(context, "(b l) c h w -> b c l h w", l=l) + x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b) + x[:,:,0] = x[:,:,0] + context[:,:,0] + x[:,:,-1] = x[:,:,-1] + context[:,:,1] + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + use_linear_attn=False, + attn_type="vanilla-xformers", + attn_level=[2,3], + **ignorekwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + self.attn_level = attn_level + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,) + tuple(ch_mult) + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + logpy.info( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + make_attn_cls = self._make_attn() + make_resblock_cls = self._make_resblock() + make_conv_cls = self._make_conv() + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + self.mid = nn.Module() + self.mid.block_1 = make_resblock_cls( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type) + self.mid.block_2 = make_resblock_cls( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + self.attn_refinement = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + make_resblock_cls( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn_cls(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + if i_level in self.attn_level: + self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={})) + else: + self.attn_refinement.insert(0, Combiner(block_in)) + # end + self.norm_out = Normalize(block_in) + self.attn_refinement.append(Combiner(block_in)) + self.conv_out = make_conv_cls( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def _make_attn(self) -> Callable: + return make_attn + + def _make_resblock(self) -> Callable: + return ResnetBlock + + def _make_conv(self) -> Callable: + return torch.nn.Conv2d + + def get_last_layer(self, **kwargs): + return self.conv_out.weight + + def forward(self, z, ref_context=None, **kwargs): + ## ref_context: b c 2 h w, 2 means starting and ending frame + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb, **kwargs) + h = self.mid.attn_1(h, **kwargs) + h = self.mid.block_2(h, temb, **kwargs) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb, **kwargs) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h, **kwargs) + if ref_context: + h = self.attn_refinement[i_level](x=h, context=ref_context[i_level]) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + if ref_context: + # print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) + h = self.attn_refinement[-1](x=h, context=ref_context[-1]) + h = self.conv_out(h, **kwargs) + if self.tanh_out: + h = torch.tanh(h) + return DecoderOutput(sample=h) + +##### + + +from abc import abstractmethod +from diffusers.models.embeddings import Timesteps + +from torch.utils.checkpoint import checkpoint +from ..basics import ( + zero_module, + conv_nd, + linear, + normalization, +) +from ..models.unet import Upsample, Downsample +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x: torch.Tensor, emb: torch.Tensor): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels: int, + emb_channels: int, + dropout: float, + out_channels: Optional[int] = None, + use_conv: bool = False, + use_scale_shift_norm: bool = False, + dims: int = 2, + use_checkpoint: bool = False, + up: bool = False, + down: bool = False, + kernel_size: int = 3, + exchange_temb_dims: bool = False, + skip_t_emb: bool = False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + self.exchange_temb_dims = exchange_temb_dims + + if isinstance(kernel_size, Iterable): + padding = [k // 2 for k in kernel_size] + else: + padding = kernel_size // 2 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.skip_t_emb = skip_t_emb + self.emb_out_channels = ( + 2 * self.out_channels if use_scale_shift_norm else self.out_channels + ) + if self.skip_t_emb: + # print(f"Skipping timestep embedding in {self.__class__.__name__}") + assert not self.use_scale_shift_norm + self.emb_layers = None + self.exchange_temb_dims = False + else: + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + self.emb_out_channels, + ), + ) + + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd( + dims, + self.out_channels, + self.out_channels, + kernel_size, + padding=padding, + ) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, kernel_size, padding=padding + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + if self.use_checkpoint: + return checkpoint(self._forward, x, emb, use_reentrant=False) + else: + return self._forward(x, emb) + + def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + + if self.skip_t_emb: + emb_out = torch.zeros_like(h) + else: + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + if self.exchange_temb_dims: + emb_out = rearrange(emb_out, "b t c ... -> b c t ...") + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h +##### + +##### +from lvdm.modules.attention_svd import * +class VideoTransformerBlock(nn.Module): + ATTENTION_MODES = { + "softmax": CrossAttention, + "softmax-xformers": MemoryEfficientCrossAttention, + } + + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + timesteps=None, + ff_in=False, + inner_dim=None, + attn_mode="softmax", + disable_self_attn=False, + disable_temporal_crossattention=False, + switch_temporal_ca_to_sa=False, + ): + super().__init__() + + attn_cls = self.ATTENTION_MODES[attn_mode] + + self.ff_in = ff_in or inner_dim is not None + if inner_dim is None: + inner_dim = dim + + assert int(n_heads * d_head) == inner_dim + + self.is_res = inner_dim == dim + + if self.ff_in: + self.norm_in = nn.LayerNorm(dim) + self.ff_in = FeedForward( + dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff + ) + + self.timesteps = timesteps + self.disable_self_attn = disable_self_attn + if self.disable_self_attn: + self.attn1 = attn_cls( + query_dim=inner_dim, + heads=n_heads, + dim_head=d_head, + context_dim=context_dim, + dropout=dropout, + ) # is a cross-attention + else: + self.attn1 = attn_cls( + query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is a self-attention + + self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) + + if disable_temporal_crossattention: + if switch_temporal_ca_to_sa: + raise ValueError + else: + self.attn2 = None + else: + self.norm2 = nn.LayerNorm(inner_dim) + if switch_temporal_ca_to_sa: + self.attn2 = attn_cls( + query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is a self-attention + else: + self.attn2 = attn_cls( + query_dim=inner_dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) # is self-attn if context is none + + self.norm1 = nn.LayerNorm(inner_dim) + self.norm3 = nn.LayerNorm(inner_dim) + self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa + + self.checkpoint = checkpoint + if self.checkpoint: + print(f"====>{self.__class__.__name__} is using checkpointing") + else: + print(f"====>{self.__class__.__name__} is NOT using checkpointing") + + def forward( + self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None + ) -> torch.Tensor: + if self.checkpoint: + return checkpoint(self._forward, x, context, timesteps, use_reentrant=False) + else: + return self._forward(x, context, timesteps=timesteps) + + def _forward(self, x, context=None, timesteps=None): + assert self.timesteps or timesteps + assert not (self.timesteps and timesteps) or self.timesteps == timesteps + timesteps = self.timesteps or timesteps + B, S, C = x.shape + x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps) + + if self.ff_in: + x_skip = x + x = self.ff_in(self.norm_in(x)) + if self.is_res: + x += x_skip + + if self.disable_self_attn: + x = self.attn1(self.norm1(x), context=context) + x + else: + x = self.attn1(self.norm1(x)) + x + + if self.attn2 is not None: + if self.switch_temporal_ca_to_sa: + x = self.attn2(self.norm2(x)) + x + else: + x = self.attn2(self.norm2(x), context=context) + x + x_skip = x + x = self.ff(self.norm3(x)) + if self.is_res: + x += x_skip + + x = rearrange( + x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps + ) + return x + + def get_last_layer(self): + return self.ff.net[-1].weight + +##### + +##### +import functools +def partialclass(cls, *args, **kwargs): + class NewCls(cls): + __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) + + return NewCls +###### + +class VideoResBlock(ResnetBlock): + def __init__( + self, + out_channels, + *args, + dropout=0.0, + video_kernel_size=3, + alpha=0.0, + merge_strategy="learned", + **kwargs, + ): + super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) + if video_kernel_size is None: + video_kernel_size = [3, 1, 1] + self.time_stack = ResBlock( + channels=out_channels, + emb_channels=0, + dropout=dropout, + dims=3, + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=True, + skip_t_emb=True, + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, bs): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError() + + def forward(self, x, temb, skip_video=False, timesteps=None): + if timesteps is None: + timesteps = self.timesteps + + b, c, h, w = x.shape + + x = super().forward(x, temb) + + if not skip_video: + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = self.time_stack(x, temb) + + alpha = self.get_alpha(bs=b // timesteps) + x = alpha * x + (1.0 - alpha) * x_mix + + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class AE3DConv(torch.nn.Conv2d): + def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): + super().__init__(in_channels, out_channels, *args, **kwargs) + if isinstance(video_kernel_size, Iterable): + padding = [int(k // 2) for k in video_kernel_size] + else: + padding = int(video_kernel_size // 2) + + self.time_mix_conv = torch.nn.Conv3d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=video_kernel_size, + padding=padding, + ) + + def forward(self, input, timesteps, skip_video=False): + x = super().forward(input) + if skip_video: + return x + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + x = self.time_mix_conv(x) + return rearrange(x, "b c t h w -> (b t) c h w") + + +class VideoBlock(AttnBlock): + def __init__( + self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" + ): + super().__init__(in_channels) + # no context, single headed, as in base class + self.time_mix_block = VideoTransformerBlock( + dim=in_channels, + n_heads=1, + d_head=in_channels, + checkpoint=True, + ff_in=True, + attn_mode="softmax", + ) + + time_embed_dim = self.in_channels * 4 + self.timestep_embedding = Timesteps(self.in_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.video_time_embed = torch.nn.Sequential( + torch.nn.Linear(self.in_channels, time_embed_dim), + torch.nn.SiLU(), + torch.nn.Linear(time_embed_dim, self.in_channels), + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def forward(self, x, timesteps, skip_video=False): + if skip_video: + return super().forward(x) + + x_in = x + x = self.attention(x) + h, w = x.shape[2:] + x = rearrange(x, "b c h w -> b (h w) c") + + x_mix = x + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = self.timestep_embedding(num_frames) + emb = self.video_time_embed(t_emb) # b, n_channels + emb = emb[:, None, :] + x_mix = x_mix + emb + + alpha = self.get_alpha() + x_mix = self.time_mix_block(x_mix, timesteps=timesteps) + x = alpha * x + (1.0 - alpha) * x_mix # alpha merge + + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + + return x_in + x + + def get_alpha( + self, + ): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") + + +class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock): + def __init__( + self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" + ): + super().__init__(in_channels) + # no context, single headed, as in base class + self.time_mix_block = VideoTransformerBlock( + dim=in_channels, + n_heads=1, + d_head=in_channels, + checkpoint=True, + ff_in=True, + attn_mode="softmax-xformers", + ) + + time_embed_dim = self.in_channels * 4 + self.timestep_embedding = Timesteps(self.in_channels, flip_sin_to_cos=True, downscale_freq_shift=0) + self.video_time_embed = torch.nn.Sequential( + torch.nn.Linear(self.in_channels, time_embed_dim), + torch.nn.SiLU(), + torch.nn.Linear(time_embed_dim, self.in_channels), + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def forward(self, x, timesteps, skip_time_block=False): + if skip_time_block: + return super().forward(x) + + x_in = x + x = self.attention(x) + h, w = x.shape[2:] + x = rearrange(x, "b c h w -> b (h w) c") + + x_mix = x + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = self.timestep_embedding(num_frames) + emb = self.video_time_embed(t_emb) # b, n_channels + emb = emb[:, None, :] + x_mix = x_mix + emb + + alpha = self.get_alpha() + x_mix = self.time_mix_block(x_mix, timesteps=timesteps) + x = alpha * x + (1.0 - alpha) * x_mix # alpha merge + + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + + return x_in + x + + def get_alpha( + self, + ): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") + + +def make_time_attn( + in_channels, + attn_type="vanilla", + attn_kwargs=None, + alpha: float = 0, + merge_strategy: str = "learned", +): + assert attn_type in [ + "vanilla", + "vanilla-xformers", + ], f"attn_type {attn_type} not supported for spatio-temporal attention" + print( + f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels" + ) + if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers": + print( + f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. " + f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}" + ) + attn_type = "vanilla" + + if attn_type == "vanilla": + assert attn_kwargs is None + return partialclass( + VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy + ) + elif attn_type == "vanilla-xformers": + print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") + return partialclass( + MemoryEfficientVideoBlock, + in_channels, + alpha=alpha, + merge_strategy=merge_strategy, + ) + else: + return NotImplementedError() + + +class Conv2DWrapper(torch.nn.Conv2d): + def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: + return super().forward(input) + + +class VideoDecoder(Decoder): + available_time_modes = ["all", "conv-only", "attn-only"] + + def __init__( + self, + *args, + video_kernel_size: Union[int, list] = [3,1,1], + alpha: float = 0.0, + merge_strategy: str = "learned", + time_mode: str = "conv-only", + **kwargs, + ): + self.video_kernel_size = video_kernel_size + self.alpha = alpha + self.merge_strategy = merge_strategy + self.time_mode = time_mode + assert ( + self.time_mode in self.available_time_modes + ), f"time_mode parameter has to be in {self.available_time_modes}" + super().__init__(*args, **kwargs) + + def get_last_layer(self, skip_time_mix=False, **kwargs): + if self.time_mode == "attn-only": + raise NotImplementedError("TODO") + else: + return ( + self.conv_out.time_mix_conv.weight + if not skip_time_mix + else self.conv_out.weight + ) + + def _make_attn(self) -> Callable: + if self.time_mode not in ["conv-only", "only-last-conv"]: + return partialclass( + make_time_attn, + alpha=self.alpha, + merge_strategy=self.merge_strategy, + ) + else: + return super()._make_attn() + + def _make_conv(self) -> Callable: + if self.time_mode != "attn-only": + return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) + else: + return Conv2DWrapper + + def _make_resblock(self) -> Callable: + if self.time_mode not in ["attn-only", "only-last-conv"]: + return partialclass( + VideoResBlock, + video_kernel_size=self.video_kernel_size, + alpha=self.alpha, + merge_strategy=self.merge_strategy, + ) + else: + return super()._make_resblock() \ No newline at end of file diff --git a/lvdm/modules/ae_modules.py b/lvdm/modules/ae_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..27d5969cdd9ffe676f201e868c66270bab40b6c7 --- /dev/null +++ b/lvdm/modules/ae_modules.py @@ -0,0 +1,794 @@ +# pytorch_diffusion + derived encoder decoder +import math + +import torch +import numpy as np +import torch.nn as nn +from einops import rearrange + +from ..utils import instantiate_from_config +from .attention import LinearAttention +from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution +from diffusers.models.autoencoders.vae import DecoderOutput + + +def nonlinearity(x): + # swish + return x*torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = q.reshape(b,c,h*w) # bcl + q = q.permute(0,2,1) # bcl -> blc l=hw + k = k.reshape(b,c,h*w) # bcl + + w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b,c,h*w) + w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b,c,h,w) + + h_ = self.proj_out(h_) + + return x+h_ + +def make_attn(in_channels, attn_type="vanilla"): + assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' + #print(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + return AttnBlock(in_channels) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + self.in_channels = in_channels + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=2, + padding=0) + def forward(self, x): + if self.with_conv: + pad = (0,1,0,1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + self.in_channels = in_channels + if self.with_conv: + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0,1,0,0)) + return emb + + + +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, + dropout, temb_channels=512): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, + out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x+h + +class Model(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch*4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList([ + torch.nn.Linear(self.ch, + self.temb_ch), + torch.nn.Linear(self.temb_ch, + self.temb_ch), + ]) + + # downsampling + self.conv_in = torch.nn.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + skip_in = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + if i_block == self.num_res_blocks: + skip_in = ch*in_ch_mult[i_level] + block.append(ResnetBlock(in_channels=block_in+skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x, t=None, context=None): + #assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions-1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", + **ignore_kwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = torch.nn.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + 2*z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x, return_hidden_states=False): + # timestep embedding + temb = None + + # print(f'encoder-input={x.shape}') + # downsampling + hs = [self.conv_in(x)] + + ## if we return hidden states for decoder usage, we will store them in a list + if return_hidden_states: + hidden_states = [] + # print(f'encoder-conv in feat={hs[0].shape}') + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + # print(f'encoder-down feat={h.shape}') + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if return_hidden_states: + hidden_states.append(h) + if i_level != self.num_resolutions-1: + # print(f'encoder-downsample (input)={hs[-1].shape}') + hs.append(self.down[i_level].downsample(hs[-1])) + # print(f'encoder-downsample (output)={hs[-1].shape}') + if return_hidden_states: + hidden_states.append(hs[0]) + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + # print(f'encoder-mid1 feat={h.shape}') + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + # print(f'encoder-mid2 feat={h.shape}') + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + # print(f'end feat={h.shape}') + if return_hidden_states: + return h, hidden_states + else: + return h + + +class Decoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + attn_type="vanilla", **ignorekwargs): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,)+tuple(ch_mult) + block_in = ch*ch_mult[self.num_resolutions-1] + curr_res = resolution // 2**(self.num_resolutions-1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print("AE working on z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape))) + + # z to block_in + self.conv_in = torch.nn.Conv2d(z_channels, + block_in, + kernel_size=3, + stride=1, + padding=1) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, z): + #assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # print(f'decoder-input={z.shape}') + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + # print(f'decoder-conv in feat={h.shape}') + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + # print(f'decoder-mid feat={h.shape}') + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + # print(f'decoder-up feat={h.shape}') + if i_level != 0: + h = self.up[i_level].upsample(h) + # print(f'decoder-upsample feat={h.shape}') + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + # print(f'decoder-conv_out feat={h.shape}') + if self.tanh_out: + h = torch.tanh(h) + return DecoderOutput(sample=h) + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock(in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, dropout=0.0), + ResnetBlock(in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, dropout=0.0), + ResnetBlock(in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, dropout=0.0), + nn.Conv2d(2*in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True)]) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1,2,3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, + ch_mult=(2,2), dropout=0.0): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.res_blocks = nn.ModuleList() + self.upsample_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d(in_channels, + mid_channels, + kernel_size=3, + stride=1, + padding=1) + self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0) for _ in range(depth)]) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0) for _ in range(depth)]) + + self.conv_out = nn.Conv2d(mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) + x = self.attn(x) + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, + ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, + z_channels=intermediate_chn, double_z=False, resolution=resolution, + attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, + out_ch=None) + self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, + mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), + dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): + super().__init__() + tmp_chn = z_channels*ch_mult[-1] + self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, + resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, + ch_mult=ch_mult, resolution=resolution, ch=ch) + self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, + out_channels=tmp_chn, depth=rescale_module_depth) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size//in_size))+1 + factor_up = 1.+ (out_size % in_size) + print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") + self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, + out_channels=in_channels) + self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, + attn_resolutions=[], in_channels=None, ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)]) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=4, + stride=2, + padding=1) + + def forward(self, x, scale_factor=1.0): + if scale_factor==1.0: + return x + else: + x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) + return x diff --git a/lvdm/modules/attention.py b/lvdm/modules/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..76ae58a01dbc926c956a27fe95a93679b9381590 --- /dev/null +++ b/lvdm/modules/attention.py @@ -0,0 +1,567 @@ +import torch +from torch import nn, einsum +import torch.nn.functional as F +from einops import rearrange, repeat +from functools import partial +try: + import xformers + import xformers.ops + XFORMERS_IS_AVAILBLE = True +except: + XFORMERS_IS_AVAILBLE = False +from ..common import ( + checkpoint, + exists, + default, +) +from ..basics import zero_module + + +class RelativePosition(nn.Module): + """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """ + + def __init__(self, num_units, max_relative_position): + super().__init__() + self.num_units = num_units + self.max_relative_position = max_relative_position + self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) + nn.init.xavier_uniform_(self.embeddings_table) + + def forward(self, length_q, length_k): + device = self.embeddings_table.device + range_vec_q = torch.arange(length_q, device=device) + range_vec_k = torch.arange(length_k, device=device) + distance_mat = range_vec_k[None, :] - range_vec_q[:, None] + distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) + final_mat = distance_mat_clipped + self.max_relative_position + final_mat = final_mat.long() + embeddings = self.embeddings_table[final_mat] + return embeddings + + +class CrossAttention(nn.Module): + + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., use_xformers=True, + relative_position=False, temporal_length=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77, + layer_cross_attention=False, layer_cross_attention_scale=1.0, layer_cross_attention_scale_learnable=False): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + self.dim_head = dim_head + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) + + self.relative_position = relative_position + if self.relative_position: + assert(temporal_length is not None) + self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) + self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) + else: + ## only used for spatial attention, while NOT for temporal attention + if XFORMERS_IS_AVAILBLE and temporal_length is None and use_xformers: + self.forward = self.efficient_forward + + self.video_length = video_length + self.image_cross_attention = image_cross_attention + self.image_cross_attention_scale = image_cross_attention_scale + self.text_context_len = text_context_len + self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable + self.layer_cross_attention = layer_cross_attention + self.layer_cross_attention_scale = layer_cross_attention_scale + self.layer_cross_attention_scale_learnable = layer_cross_attention_scale_learnable + if self.image_cross_attention: + self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) + if image_cross_attention_scale_learnable: + self.register_parameter('alpha', nn.Parameter(torch.tensor(0.)) ) + if self.layer_cross_attention: + self.to_k_layer = nn.Linear(query_dim, inner_dim, bias=False) + self.to_v_layer = nn.Linear(query_dim, inner_dim, bias=False) + if layer_cross_attention_scale_learnable: + self.register_parameter('layer_alpha', nn.Parameter(torch.tensor(0.)) ) + + + def forward(self, x, context=None, mask=None, layer_feature=None, layer_mask=None, layer_score=None): + spatial_self_attn = (context is None) + k_ip, v_ip, out_ip = None, None, None + + h = self.heads + q = self.to_q(x) + context = default(context, x) + + if self.image_cross_attention and not spatial_self_attn: + context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] + k = self.to_k(context) + v = self.to_v(context) + k_ip = self.to_k_ip(context_image) + v_ip = self.to_v_ip(context_image) + else: + if not spatial_self_attn: + context = context[:,:self.text_context_len,:] + k = self.to_k(context) + v = self.to_v(context) + + if self.layer_cross_attention: + k_layer = self.to_k_layer(layer_feature) + v_layer = self.to_v_layer(layer_feature) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale + if self.relative_position: + len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] + k2 = self.relative_position_k(len_q, len_k) + sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check + sim += sim2 + del k + + if exists(mask): + ## feasible for causal attention mask only + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b i j -> (b h) i j', h=h) + sim.masked_fill_(~(mask>0.5), max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', sim, v) + if self.relative_position: + v2 = self.relative_position_v(len_q, len_v) + out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check + out += out2 + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + + + ## for image cross-attention + if k_ip is not None: + k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) + sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale + del k_ip + sim_ip = sim_ip.softmax(dim=-1) + out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) + out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h) + + if self.layer_cross_attention: + k_layer, v_layer = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_layer, v_layer)) + sim_layer = torch.einsum('b i d, b j d -> b i j', q, k_layer) * self.scale + del k_layer + if exists(layer_mask): + max_neg_value = -torch.finfo(sim_layer.dtype).max + f = x.shape[0] // layer_mask.shape[0] # bf / b = f + i = x.shape[1] # hw + j_times = layer_feature.shape[1] // layer_mask.shape[1] # nhw / n = hw + assert i == j_times + layer_mask = repeat(layer_mask, 'b n -> (b f) i (n j)', f=f, i=i, j=j_times) + layer_mask = repeat(layer_mask, 'b i j -> (b h) i j', h=h) + sim_layer.masked_fill_(~layer_mask, max_neg_value) + sim_layer = sim_layer.softmax(dim=-1) + + if exists(layer_score): + f = x.shape[0] // layer_score.shape[0] # bf / b = f + i = x.shape[1] # hw + j_times = layer_feature.shape[1] // layer_score.shape[1] # nhw / n = hw + assert i == j_times + weight = repeat(layer_score, 'b n -> (b f) i (n j)', f=f, i=i, j=j_times) + weight = repeat(weight, 'b i j -> (b h) i j', h=h) + sim_layer = sim_layer * weight + sim_layer = sim_layer / sim_layer.sum(dim=-1, keepdim=True) + out_layer = torch.einsum('b i j, b j d -> b i d', sim_layer, v_layer) + out_layer = rearrange(out_layer, '(b h) n d -> b n (h d)', h=h) + + if out_ip is not None: + if self.image_cross_attention_scale_learnable: + out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1) + else: + out = out + self.image_cross_attention_scale * out_ip + + if self.layer_cross_attention: + if self.layer_cross_attention_scale_learnable: + out = out + self.layer_cross_attention_scale * out_layer * (torch.tanh(self.layer_alpha)+1) + else: + out = out + self.layer_cross_attention_scale * out_layer + return self.to_out(out) + + def efficient_forward(self, x, context=None, mask=None, layer_feature=None, layer_mask=None, layer_score=None): + assert layer_feature is None, "layer cross-attention is not supported in efficient_forward" + spatial_self_attn = (context is None) + k_ip, v_ip, out_ip = None, None, None + + q = self.to_q(x) + context = default(context, x) + + if self.image_cross_attention and not spatial_self_attn: + context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] + k = self.to_k(context) + v = self.to_v(context) + k_ip = self.to_k_ip(context_image) + v_ip = self.to_v_ip(context_image) + else: + if not spatial_self_attn: + context = context[:,:self.text_context_len,:] + k = self.to_k(context) + v = self.to_v(context) + + b, _, _ = q.shape + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (q, k, v), + ) + # actually compute the attention, what we cannot get enough of + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) + + ## for image cross-attention + if k_ip is not None: + k_ip, v_ip = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (k_ip, v_ip), + ) + out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None) + out_ip = ( + out_ip.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + if out_ip is not None: + if self.image_cross_attention_scale_learnable: + out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1) + else: + out = out + self.image_cross_attention_scale * out_ip + + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, use_xformers=True, + disable_self_attn=False, attention_cls=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77, + layer_cross_attention=False, layer_cross_attention_scale=1.0, layer_cross_attention_scale_learnable=False): + super().__init__() + attn_cls = CrossAttention if attention_cls is None else attention_cls + self.disable_self_attn = disable_self_attn + self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, use_xformers=use_xformers, + layer_cross_attention=layer_cross_attention, layer_cross_attention_scale=layer_cross_attention_scale, layer_cross_attention_scale_learnable=layer_cross_attention_scale_learnable) + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, video_length=video_length, + context_dim=context_dim, use_xformers=use_xformers, text_context_len=text_context_len, + image_cross_attention=image_cross_attention, image_cross_attention_scale=image_cross_attention_scale, image_cross_attention_scale_learnable=image_cross_attention_scale_learnable, + layer_cross_attention=layer_cross_attention, layer_cross_attention_scale=layer_cross_attention_scale, layer_cross_attention_scale_learnable=layer_cross_attention_scale_learnable) + self.image_cross_attention = image_cross_attention + + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + + def forward(self, x, context=None, mask=None, **kwargs): + ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments + input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments + if context is not None: + input_tuple = (x, context) + if mask is not None: + kwargs['mask'] = mask + return checkpoint(partial(self._forward, **kwargs), input_tuple, self.parameters(), self.checkpoint) + + + def _forward(self, x, context=None, mask=None, **kwargs): + x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask, **kwargs) + x + x = self.attn2(self.norm2(x), context=context, mask=mask, **kwargs) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data in spatial axis. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + + def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, + use_checkpoint=True, disable_self_attn=False, use_linear=False, video_length=None, + image_cross_attention=False, image_cross_attention_scale_learnable=False, use_xformers=True, + layer_cross_attention=False, layer_cross_attention_scale_learnable=False): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + if not use_linear: + self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + attention_cls = None + self.transformer_blocks = nn.ModuleList([ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim, + disable_self_attn=disable_self_attn, + checkpoint=use_checkpoint, + attention_cls=attention_cls, + video_length=video_length, + image_cross_attention=image_cross_attention, + image_cross_attention_scale_learnable=image_cross_attention_scale_learnable, + use_xformers=use_xformers, + layer_cross_attention=layer_cross_attention, + layer_cross_attention_scale_learnable=layer_cross_attention_scale_learnable + ) for d in range(depth) + ]) + if not use_linear: + self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) + else: + self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) + self.use_linear = use_linear + + + def forward(self, x, context=None, **kwargs): + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, 'b c h w -> b (h w) c').contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + x = block(x, context=context, **kwargs) + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in + + +class TemporalTransformer(nn.Module): + """ + Transformer block for image-like data in temporal axis. + First, reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, + use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, causal_block_size=1, + relative_position=False, temporal_length=None): + super().__init__() + self.only_self_att = only_self_att + self.relative_position = relative_position + self.causal_attention = causal_attention + self.causal_block_size = causal_block_size + + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + if not use_linear: + self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + if relative_position: + assert(temporal_length is not None) + attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length) + else: + attention_cls = partial(CrossAttention, temporal_length=temporal_length) + if self.causal_attention: + assert(temporal_length is not None) + self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) + + if self.only_self_att: + context_dim = None + self.transformer_blocks = nn.ModuleList([ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim, + attention_cls=attention_cls, + checkpoint=use_checkpoint) for d in range(depth) + ]) + if not use_linear: + self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) + else: + self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) + self.use_linear = use_linear + + def forward(self, x, context=None): + b, c, t, h, w = x.shape + x_in = x + x = self.norm(x) + x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous() + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, 'bhw c t -> bhw t c').contiguous() + if self.use_linear: + x = self.proj_in(x) + + temp_mask = None + if self.causal_attention: + # slice the from mask map + temp_mask = self.mask[:,:t,:t].to(x.device) + + if temp_mask is not None: + mask = temp_mask.to(x.device) + mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w) + else: + mask = None + + if self.only_self_att: + ## note: if no context is given, cross-attention defaults to self-attention + for i, block in enumerate(self.transformer_blocks): + x = block(x, mask=mask) + x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() + else: + x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() + context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous() + for i, block in enumerate(self.transformer_blocks): + # calculate each batch one by one (since number in shape could not greater then 65,535 for some package) + for j in range(b): + context_j = repeat( + context[j], + 't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous() + ## note: causal mask will not applied in cross-attention case + x[j] = block(x[j], context=context_j) + + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous() + if not self.use_linear: + x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous() + x = self.proj_out(x) + x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous() + + return x + x_in + + +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) + k = k.softmax(dim=-1) + context = torch.einsum('bhdn,bhen->bhde', k, v) + out = torch.einsum('bhde,bhdn->bhen', context, q) + out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = rearrange(q, 'b c h w -> b (h w) c') + k = rearrange(k, 'b c h w -> b c (h w)') + w_ = torch.einsum('bij,bjk->bik', q, k) + + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, 'b c h w -> b c (h w)') + w_ = rearrange(w_, 'b i j -> b j i') + h_ = torch.einsum('bij,bjk->bik', v, w_) + h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) + h_ = self.proj_out(h_) + + return x+h_ diff --git a/lvdm/modules/attention_svd.py b/lvdm/modules/attention_svd.py new file mode 100644 index 0000000000000000000000000000000000000000..92ceb3c978025c9bb9a640d63558a20a4989d377 --- /dev/null +++ b/lvdm/modules/attention_svd.py @@ -0,0 +1,759 @@ +import logging +import math +from inspect import isfunction +from typing import Any, Optional + +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from packaging import version +from torch import nn +from torch.utils.checkpoint import checkpoint + +logpy = logging.getLogger(__name__) + +if version.parse(torch.__version__) >= version.parse("2.0.0"): + SDP_IS_AVAILABLE = True + from torch.backends.cuda import SDPBackend, sdp_kernel + + BACKEND_MAP = { + SDPBackend.MATH: { + "enable_math": True, + "enable_flash": False, + "enable_mem_efficient": False, + }, + SDPBackend.FLASH_ATTENTION: { + "enable_math": False, + "enable_flash": True, + "enable_mem_efficient": False, + }, + SDPBackend.EFFICIENT_ATTENTION: { + "enable_math": False, + "enable_flash": False, + "enable_mem_efficient": True, + }, + None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True}, + } +else: + from contextlib import nullcontext + + SDP_IS_AVAILABLE = False + sdp_kernel = nullcontext + BACKEND_MAP = {} + logpy.warn( + f"No SDP backend available, likely because you are running in pytorch " + f"versions < 2.0. In fact, you are using PyTorch {torch.__version__}. " + f"You might want to consider upgrading." + ) + +try: + import xformers + import xformers.ops + + XFORMERS_IS_AVAILABLE = True +except: + XFORMERS_IS_AVAILABLE = False + logpy.warn("no module 'xformers'. Processing without...") + +# from .diffusionmodules.util import mixed_checkpoint as checkpoint + + +def exists(val): + return val is not None + + +def uniq(arr): + return {el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange( + qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 + ) + k = k.softmax(dim=-1) + context = torch.einsum("bhdn,bhen->bhde", k, v) + out = torch.einsum("bhde,bhdn->bhen", context, q) + out = rearrange( + out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w + ) + return self.to_out(out) + + +class SelfAttention(nn.Module): + ATTENTION_MODES = ("xformers", "torch", "math") + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = False, + qk_scale: Optional[float] = None, + attn_drop: float = 0.0, + proj_drop: float = 0.0, + attn_mode: str = "xformers", + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + assert attn_mode in self.ATTENTION_MODES + self.attn_mode = attn_mode + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, L, C = x.shape + + qkv = self.qkv(x) + if self.attn_mode == "torch": + qkv = rearrange( + qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads + ).float() + q, k, v = qkv[0], qkv[1], qkv[2] # B H L D + x = torch.nn.functional.scaled_dot_product_attention(q, k, v) + x = rearrange(x, "B H L D -> B L (H D)") + elif self.attn_mode == "xformers": + qkv = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads) + q, k, v = qkv[0], qkv[1], qkv[2] # B L H D + x = xformers.ops.memory_efficient_attention(q, k, v) + x = rearrange(x, "B L H D -> B L (H D)", H=self.num_heads) + elif self.attn_mode == "math": + qkv = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k, v = qkv[0], qkv[1], qkv[2] # B H L D + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v).transpose(1, 2).reshape(B, L, C) + else: + raise NotImplemented + + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b (h w) c") + k = rearrange(k, "b c h w -> b c (h w)") + w_ = torch.einsum("bij,bjk->bik", q, k) + + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, "b c h w -> b c (h w)") + w_ = rearrange(w_, "b i j -> b j i") + h_ = torch.einsum("bij,bjk->bik", v, w_) + h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) + h_ = self.proj_out(h_) + + return x + h_ + + +class CrossAttention(nn.Module): + def __init__( + self, + query_dim, + context_dim=None, + heads=8, + dim_head=64, + dropout=0.0, + backend=None, + ): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + self.backend = backend + + def forward( + self, + x, + context=None, + mask=None, + additional_tokens=None, + n_times_crossframe_attn_in_self=0, + ): + h = self.heads + + if additional_tokens is not None: + # get the number of masked tokens at the beginning of the output sequence + n_tokens_to_mask = additional_tokens.shape[1] + # add additional token + x = torch.cat([additional_tokens, x], dim=1) + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + if n_times_crossframe_attn_in_self: + # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 + assert x.shape[0] % n_times_crossframe_attn_in_self == 0 + n_cp = x.shape[0] // n_times_crossframe_attn_in_self + k = repeat( + k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp + ) + v = repeat( + v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp + ) + + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) + + ## old + """ + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + del q, k + + if exists(mask): + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', sim, v) + """ + ## new + with sdp_kernel(**BACKEND_MAP[self.backend]): + # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape) + out = F.scaled_dot_product_attention( + q, k, v, attn_mask=mask + ) # scale is dim_head ** -0.5 per default + + del q, k, v + out = rearrange(out, "b h n d -> b n (h d)", h=h) + + if additional_tokens is not None: + # remove additional token + out = out[:, n_tokens_to_mask:] + return self.to_out(out) + + +class MemoryEfficientCrossAttention(nn.Module): + # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 + def __init__( + self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs + ): + super().__init__() + logpy.debug( + f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " + f"context_dim is {context_dim} and using {heads} heads with a " + f"dimension of {dim_head}." + ) + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.heads = heads + self.dim_head = dim_head + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + self.attention_op: Optional[Any] = None + + def forward( + self, + x, + context=None, + mask=None, + additional_tokens=None, + n_times_crossframe_attn_in_self=0, + ): + if additional_tokens is not None: + # get the number of masked tokens at the beginning of the output sequence + n_tokens_to_mask = additional_tokens.shape[1] + # add additional token + x = torch.cat([additional_tokens, x], dim=1) + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + if n_times_crossframe_attn_in_self: + # reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 + assert x.shape[0] % n_times_crossframe_attn_in_self == 0 + # n_cp = x.shape[0]//n_times_crossframe_attn_in_self + k = repeat( + k[::n_times_crossframe_attn_in_self], + "b ... -> (b n) ...", + n=n_times_crossframe_attn_in_self, + ) + v = repeat( + v[::n_times_crossframe_attn_in_self], + "b ... -> (b n) ...", + n=n_times_crossframe_attn_in_self, + ) + + b, _, _ = q.shape + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (q, k, v), + ) + + # actually compute the attention, what we cannot get enough of + if version.parse(xformers.__version__) >= version.parse("0.0.21"): + # NOTE: workaround for + # https://github.com/facebookresearch/xformers/issues/845 + max_bs = 32768 + N = q.shape[0] + n_batches = math.ceil(N / max_bs) + out = list() + for i_batch in range(n_batches): + batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs) + out.append( + xformers.ops.memory_efficient_attention( + q[batch], + k[batch], + v[batch], + attn_bias=None, + op=self.attention_op, + ) + ) + out = torch.cat(out, 0) + else: + out = xformers.ops.memory_efficient_attention( + q, k, v, attn_bias=None, op=self.attention_op + ) + + # TODO: Use this directly in the attention operation, as a bias + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + if additional_tokens is not None: + # remove additional token + out = out[:, n_tokens_to_mask:] + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + ATTENTION_MODES = { + "softmax": CrossAttention, # vanilla attention + "softmax-xformers": MemoryEfficientCrossAttention, # ampere + } + + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + disable_self_attn=False, + attn_mode="softmax", + sdp_backend=None, + ): + super().__init__() + assert attn_mode in self.ATTENTION_MODES + if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE: + logpy.warn( + f"Attention mode '{attn_mode}' is not available. Falling " + f"back to native attention. This is not a problem in " + f"Pytorch >= 2.0. FYI, you are running with PyTorch " + f"version {torch.__version__}." + ) + attn_mode = "softmax" + elif attn_mode == "softmax" and not SDP_IS_AVAILABLE: + logpy.warn( + "We do not support vanilla attention anymore, as it is too " + "expensive. Sorry." + ) + if not XFORMERS_IS_AVAILABLE: + assert ( + False + ), "Please install xformers via e.g. 'pip install xformers==0.0.16'" + else: + logpy.info("Falling back to xformers efficient attention.") + attn_mode = "softmax-xformers" + attn_cls = self.ATTENTION_MODES[attn_mode] + if version.parse(torch.__version__) >= version.parse("2.0.0"): + assert sdp_backend is None or isinstance(sdp_backend, SDPBackend) + else: + assert sdp_backend is None + self.disable_self_attn = disable_self_attn + self.attn1 = attn_cls( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, + backend=sdp_backend, + ) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = attn_cls( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + backend=sdp_backend, + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + if self.checkpoint: + logpy.debug(f"{self.__class__.__name__} is using checkpointing") + + def forward( + self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 + ): + kwargs = {"x": x} + + if context is not None: + kwargs.update({"context": context}) + + if additional_tokens is not None: + kwargs.update({"additional_tokens": additional_tokens}) + + if n_times_crossframe_attn_in_self: + kwargs.update( + {"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self} + ) + + # return mixed_checkpoint(self._forward, kwargs, self.parameters(), self.checkpoint) + if self.checkpoint: + # inputs = {"x": x, "context": context} + return checkpoint(self._forward, x, context) + # return checkpoint(self._forward, inputs, self.parameters(), self.checkpoint) + else: + return self._forward(**kwargs) + + def _forward( + self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 + ): + x = ( + self.attn1( + self.norm1(x), + context=context if self.disable_self_attn else None, + additional_tokens=additional_tokens, + n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self + if not self.disable_self_attn + else 0, + ) + + x + ) + x = ( + self.attn2( + self.norm2(x), context=context, additional_tokens=additional_tokens + ) + + x + ) + x = self.ff(self.norm3(x)) + x + return x + + +class BasicTransformerSingleLayerBlock(nn.Module): + ATTENTION_MODES = { + "softmax": CrossAttention, # vanilla attention + "softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version + # (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128]) + } + + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + attn_mode="softmax", + ): + super().__init__() + assert attn_mode in self.ATTENTION_MODES + attn_cls = self.ATTENTION_MODES[attn_mode] + self.attn1 = attn_cls( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + context_dim=context_dim, + ) + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + # inputs = {"x": x, "context": context} + # return checkpoint(self._forward, inputs, self.parameters(), self.checkpoint) + return checkpoint(self._forward, x, context) + + def _forward(self, x, context=None): + x = self.attn1(self.norm1(x), context=context) + x + x = self.ff(self.norm2(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + context_dim=None, + disable_self_attn=False, + use_linear=False, + attn_type="softmax", + use_checkpoint=True, + # sdp_backend=SDPBackend.FLASH_ATTENTION + sdp_backend=None, + ): + super().__init__() + logpy.debug( + f"constructing {self.__class__.__name__} of depth {depth} w/ " + f"{in_channels} channels and {n_heads} heads." + ) + + if exists(context_dim) and not isinstance(context_dim, list): + context_dim = [context_dim] + if exists(context_dim) and isinstance(context_dim, list): + if depth != len(context_dim): + logpy.warn( + f"{self.__class__.__name__}: Found context dims " + f"{context_dim} of depth {len(context_dim)}, which does not " + f"match the specified 'depth' of {depth}. Setting context_dim " + f"to {depth * [context_dim[0]]} now." + ) + # depth does not match context dims. + assert all( + map(lambda x: x == context_dim[0], context_dim) + ), "need homogenous context_dim to match depth automatically" + context_dim = depth * [context_dim[0]] + elif context_dim is None: + context_dim = [None] * depth + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + if not use_linear: + self.proj_in = nn.Conv2d( + in_channels, inner_dim, kernel_size=1, stride=1, padding=0 + ) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim[d], + disable_self_attn=disable_self_attn, + attn_mode=attn_type, + checkpoint=use_checkpoint, + sdp_backend=sdp_backend, + ) + for d in range(depth) + ] + ) + if not use_linear: + self.proj_out = zero_module( + nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + ) + else: + # self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) + self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) + self.use_linear = use_linear + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + if not isinstance(context, list): + context = [context] + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c").contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + if i > 0 and len(context) == 1: + i = 0 # use same context for each block + x = block(x, context=context[i]) + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in + + +class SimpleTransformer(nn.Module): + def __init__( + self, + dim: int, + depth: int, + heads: int, + dim_head: int, + context_dim: Optional[int] = None, + dropout: float = 0.0, + checkpoint: bool = True, + ): + super().__init__() + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + BasicTransformerBlock( + dim, + heads, + dim_head, + dropout=dropout, + context_dim=context_dim, + attn_mode="softmax-xformers", + checkpoint=checkpoint, + ) + ) + + def forward( + self, + x: torch.Tensor, + context: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + for layer in self.layers: + x = layer(x, context) + return x \ No newline at end of file diff --git a/lvdm/pipelines/pipeline_animation.py b/lvdm/pipelines/pipeline_animation.py new file mode 100644 index 0000000000000000000000000000000000000000..fc6479d153a4e28b9eb2f0e7670aacaca9ca9886 --- /dev/null +++ b/lvdm/pipelines/pipeline_animation.py @@ -0,0 +1,550 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from dataclasses import dataclass +from typing import Callable, Dict, List, Optional, Union + +import numpy as np +from PIL import Image +import torch +import torch.nn.functional as F + + +from diffusers.utils import is_accelerate_available + +from ..models.unet import UNetModel +from ..models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref +from ..models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler +from ..models.layer_controlnet import LayerControlNet + +from diffusers.schedulers import DDIMScheduler +from diffusers.utils import BaseOutput, logging +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg + +from einops import rearrange + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class AnimationPipelineOutput(BaseOutput): + videos: Union[List[Image.Image], np.ndarray] + + +class AnimationPipeline(DiffusionPipeline): + model_cpu_offload_seq = "image_encoder->unet->vae" + _callback_tensor_inputs = ["latents"] + def __init__( + self, + vae, + vae_dualref, + text_encoder, + image_encoder, + image_projector, + unet: UNetModel, + layer_controlnet: LayerControlNet, + scheduler: DDIMScheduler, + ): + super().__init__() + + self.register_modules( + vae=vae, + vae_dualref=vae_dualref, + text_encoder=text_encoder, + image_encoder=image_encoder, + image_projector=image_projector, + unet=unet, + layer_controlnet=layer_controlnet, + scheduler=scheduler, + ) + if vae is not None: + self.vae_scale_factor = 2 ** (len(self.vae.config.ddconfig["ch_mult"]) - 1) + else: + self.vae_scale_factor = 2 ** (len(self.vae_dualref.config.ddconfig["ch_mult"]) - 1) + + def enable_sequential_cpu_offload(self, gpu_id=0): + if is_accelerate_available(): + from accelerate import cpu_offload + else: + raise ImportError("Please install accelerate via `pip install accelerate`") + + device = torch.device(f"cuda:{gpu_id}") + + for cpu_offloaded_model in [self.unet, self.layer_encoder, self.text_encoder, self.vae, self.vae_dualref]: + if cpu_offloaded_model is not None: + cpu_offload(cpu_offloaded_model, device) + + @property + def _execution_device(self): + if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): + return self.device + for module in self.unet.modules(): + if ( + hasattr(module, "_hf_hook") + and hasattr(module._hf_hook, "execution_device") + and module._hf_hook.execution_device is not None + ): + return torch.device(module._hf_hook.execution_device) + return self.device + + def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + + text_embeddings = self.text_encoder(prompt) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + bs_embed, seq_len, _ = text_embeddings.shape + text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) + text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + uncond_embeddings = self.text_encoder(uncond_tokens) + + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = uncond_embeddings.shape[1] + uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) + uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) + + return text_embeddings + + def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance): + batch_size = image.shape[0] + + image_embeddings = self.image_encoder(image) + image_embeddings = self.image_projector(image_embeddings) + + # duplicate image embeddings for each generation per prompt, using mps friendly method + bs_embed, seq_len, _ = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance: + uncond_embeddings = self.image_encoder(torch.zeros_like(image)) + uncond_embeddings = self.image_projector(uncond_embeddings) + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = uncond_embeddings.shape[1] + uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) + uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and image embeddings into a single batch + # to avoid doing two forward passes + image_embeddings = torch.cat([uncond_embeddings, image_embeddings]) + + return image_embeddings + + def _encode_controls( + self, + layer_masks, + layer_regions, + layer_validity, + motion_scores, + layer_static, + trajectories, + sketches, + video_length, + mode, + device, + num_videos_per_prompt, + do_classifier_free_guidance + ): + vae = self.vae if self.vae is not None else self.vae_dualref + + batch_size, n_layers = layer_masks.shape[:2] + # Frame decomposition + layer_regions = rearrange(layer_regions, "b n f c h w -> (b n f) c h w") + keyframe_layer_latents = vae.encode(layer_regions)[0].sample() * 0.18215 + keyframe_layer_latents = rearrange(keyframe_layer_latents, "(b n f) c h w -> b n f c h w", b=batch_size, n=n_layers) + layer_latents_shape = list(keyframe_layer_latents.shape) + layer_latents_shape[2] = video_length + layer_latents = torch.zeros(layer_latents_shape, device=device, dtype=keyframe_layer_latents.dtype) + resized_layer_masks = rearrange(layer_masks, "b n f c h w -> (b n f) c h w") + resized_layer_masks = F.interpolate(resized_layer_masks.float(), size=layer_latents.shape[-2:], mode="bilinear") + resized_layer_masks = rearrange(resized_layer_masks, "(b n f) c h w -> b n f c h w", b=batch_size, n=n_layers).to(dtype=layer_latents.dtype) + layer_latent_mask_shape = list(resized_layer_masks.shape) + layer_latent_mask_shape[2] = video_length + layer_latent_mask = torch.zeros(layer_latent_mask_shape, device=device, dtype=resized_layer_masks.dtype) + + for batch_idx in range(batch_size): + if mode != "interpolate": + layer_latents[batch_idx, :, 0] = keyframe_layer_latents[batch_idx, :, 0] + layer_latent_mask[batch_idx, :, 0] = resized_layer_masks[batch_idx, :, 0] + if layer_static[batch_idx].any(): + static_indices = torch.nonzero(layer_static[batch_idx]).squeeze(1) + layer_latents[batch_idx, static_indices, :] = keyframe_layer_latents[batch_idx, static_indices, 0:1].repeat(1, video_length, 1, 1, 1) + layer_latent_mask[batch_idx, static_indices, :] = resized_layer_masks[batch_idx, static_indices, 0:1].repeat(1, video_length, 1, 1, 1) + else: + layer_latents[batch_idx, :, 0] = keyframe_layer_latents[batch_idx, :, 0] + layer_latents[batch_idx, :, -1] = keyframe_layer_latents[batch_idx, :, -1] + layer_latent_mask[batch_idx, :, 0] = resized_layer_masks[batch_idx, :, 0] + layer_latent_mask[batch_idx, :, -1] = resized_layer_masks[batch_idx, :, -1] + if layer_static[batch_idx].any(): + static_indices = torch.nonzero(layer_static[batch_idx]).squeeze(1) + layer_latents[batch_idx, static_indices, :video_length//2] = keyframe_layer_latents[batch_idx, static_indices, 0:1].repeat(1, video_length//2, 1, 1, 1) + layer_latents[batch_idx, static_indices, video_length//2:] = keyframe_layer_latents[batch_idx, static_indices, -1:].repeat(1, video_length//2, 1, 1, 1) + layer_latent_mask[batch_idx, static_indices, :video_length//2] = resized_layer_masks[batch_idx, static_indices, 0:1].repeat(1, video_length//2, 1, 1, 1) + layer_latent_mask[batch_idx, static_indices, video_length//2:] = resized_layer_masks[batch_idx, static_indices, -1:].repeat(1, video_length//2, 1, 1, 1) + layer_latents = torch.repeat_interleave(layer_latents, num_videos_per_prompt, dim=0) + layer_latent_mask = torch.repeat_interleave(layer_latent_mask, num_videos_per_prompt, dim=0) + layer_validity = torch.repeat_interleave(layer_validity, num_videos_per_prompt, dim=0) + + sketches = rearrange(sketches, 'b n f c h w -> (b n f) c h w') + layer_sketch_latents = vae.encode(sketches)[0].sample() * 0.18215 + layer_sketch_latents = rearrange(layer_sketch_latents, '(b n f) c h w -> b n f c h w', b=batch_size, n=n_layers) + layer_sketch_latents = torch.repeat_interleave(layer_sketch_latents, num_videos_per_prompt, dim=0) + + trajectories = torch.repeat_interleave(trajectories, num_videos_per_prompt, dim=0) + + motion_scores = torch.repeat_interleave(motion_scores, num_videos_per_prompt, dim=0) + + if do_classifier_free_guidance: + layer_latents = torch.cat([layer_latents, layer_latents], dim=0) + layer_latent_mask = torch.cat([layer_latent_mask, layer_latent_mask], dim=0) + motion_scores = torch.cat([motion_scores, motion_scores], dim=0) + layer_sketch_latents = torch.cat([layer_sketch_latents, layer_sketch_latents], dim=0) + trajectories = torch.cat([trajectories, trajectories], dim=0) + layer_validity = torch.cat([layer_validity, layer_validity], dim=0) + return dict( + layer_latents=layer_latents, + layer_latent_mask=layer_latent_mask, + motion_scores=motion_scores, + sketch=layer_sketch_latents, + trajectory=trajectories, + layer_validity=layer_validity, + ) + + def get_latent_z_with_hidden_states(self, videos): + b, f, c, h, w = videos.shape + x = rearrange(videos, 'b f c h w -> (b f) c h w') + encoder_posterior, hidden_states = self.vae_dualref.encode(x, return_hidden_states=True) + hidden_states_first_last = [] + ### use only the first and last hidden states + for hid in hidden_states: + hid = rearrange(hid, '(b f) c h w -> b c f h w', f=f) + hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) + hidden_states_first_last.append(hid_new.float()) + + z = encoder_posterior[0].sample() * 0.18215 + z = rearrange(z, '(b f) c h w -> b c f h w', b=b, f=f).detach() + return z, hidden_states_first_last + + def get_latent_z(self, videos): + b, f, c, h, w = videos.shape + x = rearrange(videos, 'b f c h w -> (b f) c h w') + z = self.vae.encode(x)[0].sample() * 0.18215 + z = rearrange(z, '(b f) c h w -> b c f h w', b=b, f=f).detach() + return z + + def decode_latents(self, latents): + batch_size = latents.shape[0] + video_length = latents.shape[2] + latents = 1 / 0.18215 * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + video = [] + for batch_idx in range(batch_size): + video.append(self.vae.decode(latents[batch_idx * video_length:(batch_idx + 1) * video_length]).sample) + video = torch.cat(video, dim=0) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + def decode_latents_with_hidden_states(self, latents, hidden_states): + batch_size = latents.shape[0] + video_length = latents.shape[2] + latents = 1 / 0.18215 * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + video = [] + for batch_idx in range(batch_size): + video.append(self.vae_dualref.decode(latents[batch_idx * video_length:(batch_idx + 1) * video_length].float(), ref_context=hidden_states, timesteps=video_length).sample) + video = torch.cat(video, dim=0) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps): + if not isinstance(prompt, str) and not isinstance(prompt, list): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + if latents is None: + rand_device = device + + if isinstance(generator, list): + latents = [ + torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) + for i in range(batch_size) + ] + latents = torch.cat(latents, dim=0).to(device) + else: + latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) + else: + if latents.shape != shape: + raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__( + self, + prompt: Union[str, List[str]], + video_length: int, + height: int, + width: int, + frame_tensor: torch.FloatTensor, + layer_masks: torch.FloatTensor, # [b, n_layers, 1 (2), c, h, w] + layer_regions: torch.FloatTensor, # [b, n_layers, 1 (2), c, h, w] + layer_static: torch.Tensor, # [b, n_layers] + motion_scores: torch.Tensor, # [b, n_layers] + sketch: torch.FloatTensor, # [b, n_layers, f, c, h, w] + trajectory: torch.FloatTensor, # [b, n_layers, f, c, h, w] + layer_validity: torch.Tensor, # [b, n_layers] + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + guidance_rescale: float=0.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_videos_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + output_type: Optional[str] = "tensor", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: Optional[int] = 1, + + fps: Optional[int] = 24, + mode: str = "interpolate", + weight_dtype: torch.dtype = torch.float32, + + **kwargs, + ): + # Check inputs. Raise error if not correct + self.check_inputs(prompt, height, width, callback_steps) + + # Define call parameters + # batch_size = 1 if isinstance(prompt, str) else len(prompt) + batch_size = len(frame_tensor) + if isinstance(prompt, list): + batch_size = len(prompt) + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + fps = torch.tensor([fps] * batch_size * num_videos_per_prompt, device=device, dtype=weight_dtype) + frame_tensor = frame_tensor.to(dtype=weight_dtype) + layer_regions = layer_regions.to(dtype=weight_dtype) + motion_scores = motion_scores.to(dtype=weight_dtype) + sketch = sketch.to(dtype=weight_dtype) + trajectory = trajectory.to(dtype=weight_dtype) + + # Encode layer-level controls + encoded_layer_controls = self._encode_controls( + layer_masks, + layer_regions, + layer_validity, + motion_scores, + layer_static, + trajectory, + sketch, + video_length, + mode, + device, + num_videos_per_prompt, + do_classifier_free_guidance + ) + layer_validity = encoded_layer_controls.pop("layer_validity") + + # Encode input prompt + prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size + if negative_prompt is not None: + negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size + text_embeddings = self._encode_prompt( + prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt + ) + + cond_frame = frame_tensor[:, 0] # [b, f, c, h, w] -> [b, c, h, w] + image_embeddings = self._encode_image( + cond_frame, device, num_videos_per_prompt, do_classifier_free_guidance + ) + + if mode == "interpolate": + z, hidden_states = self.get_latent_z_with_hidden_states(frame_tensor) + else: + z = self.get_latent_z(frame_tensor) + z = z.to(dtype=weight_dtype) + if mode != "interpolate": + img_cat_cond = z[:, :, :1] + img_cat_cond = img_cat_cond.repeat(1, 1, video_length, 1, 1) + else: + img_cat_cond = torch.zeros_like(z[:, :, :1].repeat(1, 1, video_length, 1, 1)) + img_cat_cond[:, :, 0] = z[:, :, 0] + img_cat_cond[:, :, -1] = z[:, :, -1] + img_cat_cond = torch.repeat_interleave(img_cat_cond, num_videos_per_prompt, dim=0) + if do_classifier_free_guidance: + img_cat_cond = torch.cat([img_cat_cond, img_cat_cond], dim=0) + fps = torch.cat([fps, fps], dim=0) + + # Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # Prepare latent variables + num_channels_latents = self.unet.out_channels + latents = self.prepare_latents( + batch_size * num_videos_per_prompt, + num_channels_latents, + video_length, + height, + width, + weight_dtype, + device, + generator, + ) + + # Prepare extra step kwargs. + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + noise_with_img = torch.cat([latent_model_input, img_cat_cond], dim=1) + + if do_classifier_free_guidance: + ts = torch.full((batch_size * num_videos_per_prompt * 2,), t, device=device, dtype=torch.long) + else: + ts = torch.full((batch_size * num_videos_per_prompt,), t, device=device, dtype=torch.long) + + layer_features = self.layer_controlnet( + noise_with_img, ts, + context_text=text_embeddings, + context_img=image_embeddings, + fps=fps, + **encoded_layer_controls + ) + noise_pred = self.unet( + noise_with_img, ts, + context_text=text_embeddings, + context_img=image_embeddings, + fps=fps, + controls=layer_features, + layer_validity=layer_validity, + ).sample.to(dtype=weight_dtype) + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) + + if do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_cond, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # Post-processing + if mode == "interpolate": + video = self.decode_latents_with_hidden_states(latents, hidden_states) + else: + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return AnimationPipelineOutput(videos=video) diff --git a/lvdm/utils.py b/lvdm/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..bb9cce23e63dedf112324e15d8baa7cba37da7ee --- /dev/null +++ b/lvdm/utils.py @@ -0,0 +1,394 @@ +import importlib +import numpy as np +import cv2 +import torch +import torch.distributed as dist +import os +from einops import rearrange +import imageio +import torchvision +from PIL import Image +import io +from matplotlib import pyplot as plt + + +RY = 15 +YG = 6 +GC = 4 +CB = 11 +BM = 13 +MR = 6 + +COLORWHEEL = torch.zeros((RY + YG + GC + CB + BM + MR, 3)) +col = 0 + +# RY +COLORWHEEL[0:RY, 0] = 255 +COLORWHEEL[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY) +col = col + RY +# YG +COLORWHEEL[col:col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG) +COLORWHEEL[col:col + YG, 1] = 255 +col = col + YG +# GC +COLORWHEEL[col:col + GC, 1] = 255 +COLORWHEEL[col:col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC) +col = col + GC +# CB +COLORWHEEL[col:col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB) +COLORWHEEL[col:col + CB, 2] = 255 +col = col + CB +# BM +COLORWHEEL[col:col + BM, 2] = 255 +COLORWHEEL[col:col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM) +col = col + BM +# MR +COLORWHEEL[col:col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR) +COLORWHEEL[col:col + MR, 0] = 255 + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def check_istarget(name, para_list): + """ + name: full name of source para + para_list: partial name of target para + """ + istarget=False + for para in para_list: + if para in name: + return True + return istarget + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def load_npz_from_dir(data_dir): + data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] + data = np.concatenate(data, axis=0) + return data + + +def load_npz_from_paths(data_paths): + data = [np.load(data_path)['arr_0'] for data_path in data_paths] + data = np.concatenate(data, axis=0) + return data + + +def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): + h, w = image.shape[:2] + if resize_short_edge is not None: + k = resize_short_edge / min(h, w) + else: + k = max_resolution / (h * w) + k = k**0.5 + h = int(np.round(h * k / 64)) * 64 + w = int(np.round(w * k / 64)) * 64 + image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) + return image + + +def setup_dist(args): + if dist.is_initialized(): + return + torch.cuda.set_device(args.local_rank) + torch.distributed.init_process_group( + 'nccl', + init_method='env://' + ) + + +def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): + videos = rearrange(videos, "b c t h w -> t b c h w") + outputs = [] + for x in videos: + x = torchvision.utils.make_grid(x, nrow=n_rows) + x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) + if rescale: + x = (x + 1.0) / 2.0 # -1,1 -> 0,1 + x = (x * 255).numpy().astype(np.uint8) + outputs.append(x) + + os.makedirs(os.path.dirname(path), exist_ok=True) + imageio.mimsave(path, outputs, fps=fps) + +def save_images_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6): + videos = rearrange(videos, "b c t h w -> t b c h w") + os.makedirs(path, exist_ok=True) + for time_idx, x in enumerate(videos): + x = torchvision.utils.make_grid(x, nrow=n_rows) + x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) + if rescale: + x = (x + 1.0) / 2.0 # -1,1 -> 0,1 + x = (x * 255).numpy().astype(np.uint8) + image = Image.fromarray(x) + image.save(os.path.join(path, f"{time_idx:04d}.png")) + +def save_image_with_mask(image: torch.Tensor, masks: torch.Tensor, path: str, rescale=False, alpha=0.6): + # image: [C, H, W], mask: [N, H, W] + os.makedirs(os.path.dirname(path), exist_ok=True) + image = rearrange(image, "c h w -> h w c") + if rescale: + image = (image + 1.0) / 2.0 # -1,1 -> 0,1 + image = (image * 255).numpy().astype(np.uint8) + final_image = Image.fromarray(image).convert("RGBA") + cmap = plt.get_cmap("tab20c") + masks = masks.cpu().numpy().astype(np.float32) + for i, img in enumerate(masks): + mask_color = np.array([*cmap(i * 4 + 2)[:3], alpha]) + mask = img[:,:,None] * mask_color[None,None,:] * 255 + mask = mask.astype(np.uint8) + mask = Image.fromarray(mask).convert("RGBA") + final_image = Image.alpha_composite(final_image, mask) + final_image.save(path) + +def save_videos_with_heatmap(videos: torch.Tensor, trajectory: torch.Tensor, path: str, n_rows=6, fps=8): + # use Image RGBA and alpha_composite to combine video and trajectory + # use imageio to save video + videos = rearrange(videos, "b c t h w -> t b c h w") + trajectory = rearrange(trajectory, "b c t h w -> t b c h w") + outputs = [] + for x, y in zip(videos, trajectory): + x = torchvision.utils.make_grid(x, nrow=6) + x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) + x = (x * 255).numpy().astype(np.uint8) + y = torchvision.utils.make_grid(y, nrow=6) + y = y.transpose(0, 1).transpose(1, 2).squeeze(-1) + y = torch.cat([y, torch.mean(y, dim=-1, keepdim=True)], dim=-1) + y = (y * 255).numpy().astype(np.uint8) + x = Image.fromarray(x).convert("RGBA") + y = Image.fromarray(y) + x = Image.alpha_composite(x, y) + outputs.append(x) + os.makedirs(os.path.dirname(path), exist_ok=True) + imageio.mimsave(path, outputs, fps=fps) + +def save_videos_with_traj(videos: torch.Tensor, trajectory: torch.Tensor, path: str, rescale=False, fps=8, line_width=3, circle_radius=5): + # videos: [C, F, H, W] + # trajectory: [F, N, 2] + os.makedirs(os.path.dirname(path), exist_ok=True) + videos = rearrange(videos, "c f h w -> f h w c") + if rescale: + videos = (videos + 1) / 2 + videos = (videos * 255).numpy().astype(np.uint8) + outputs = [] + for frame_idx, img in enumerate(videos): + # img: [H, W, C], traj: [N, 2] + # draw trajectory use cv2.line + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + for traj_idx in range(trajectory.shape[1]): + for history_idx in range(frame_idx): + cv2.line(img, tuple(trajectory[history_idx, traj_idx].int().tolist()), tuple(trajectory[history_idx+1, traj_idx].int().tolist()), (0, 0, 255), line_width) + cv2.circle(img, tuple(trajectory[frame_idx, traj_idx].int().tolist()), circle_radius, (100, 230, 160), -1) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + outputs.append(img) + imageio.mimsave(path, outputs, fps=fps) + +def save_layer_prompts_video(videos, layer_masks, motion_scores, flow_maps, path, alpha=0.6, fps=8, flow_step=10, flow_scale=1.0): + # videos: [F, C, H, W] + # layer_masks: [N, F, H, W] + # motion_scores: [N, ] + # flow_maps: [F, 2, H, W] + frame_length = videos.shape[0] + h, w = videos.shape[-2:] + n_keyframes = layer_masks.shape[1] + if n_keyframes == 1: + keyframe_indices = [0] + elif n_keyframes == 2: + keyframe_indices = [0, frame_length - 1] + else: + keyframe_indices = list(range(n_keyframes)) + videos = rearrange(videos, "t c h w -> t h w c") + videos = ((videos + 1) / 2 * 255).clamp(0, 255).numpy().astype(np.uint8) + layer_masks = layer_masks.numpy() + flow_maps = flow_maps.float().numpy() + frame_list = [] + cmap = plt.get_cmap("tab10") + for frame_idx in range(frame_length): + output_frame = Image.new("RGBA", (w * 2, h * 2)) + frame = Image.fromarray(videos[frame_idx]).convert("RGBA") + frame_mask = None + output_frame.paste(frame, (0, 0)) + for layer_idx, layer_mask in enumerate(layer_masks): + if frame_idx in keyframe_indices: + layer_color = (np.array([*cmap(layer_idx)[:3], alpha]) * 255).astype(np.uint8) + if frame_idx == frame_length - 1: + mask_with_color = Image.fromarray(layer_mask[-1, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :]) + else: + mask_with_color = Image.fromarray(layer_mask[frame_idx, :, :, np.newaxis] * layer_color[np.newaxis, np.newaxis, :]) + else: + mask_with_color = Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8)) + frame = Image.alpha_composite(frame, mask_with_color) + frame_mask = Image.alpha_composite(frame_mask, mask_with_color) if frame_mask is not None else mask_with_color + output_frame.paste(frame, (w, 0)) + output_frame.paste(frame_mask, (0, h)) + flow_x = flow_maps[frame_idx, 0] * flow_scale + flow_y = flow_maps[frame_idx, 1] * flow_scale + x, y = np.arange(0, w, step=flow_step), np.arange(0, h, step=flow_step) + X, Y = np.meshgrid(x, y) + U, V = flow_x[::flow_step, ::flow_step], flow_y[::flow_step, ::flow_step] + plt.figure() + plt.gca().set_facecolor('white') + plt.quiver(X, Y, U, V, color='black', angles='xy', scale_units='xy', scale=1) + plt.xlim(0, w) + plt.ylim(h, 0) + plt.gca().set_xticks([]) + plt.gca().set_yticks([]) + buf = io.BytesIO() + plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) + buf.seek(0) + flow = Image.open(buf).convert("RGBA") + output_frame.paste(flow, (w, h)) + plt.close() + frame_list.append(output_frame) + os.makedirs(os.path.dirname(path), exist_ok=True) + imageio.mimsave(path, frame_list, fps=fps) + +def flow_uv_to_colors(u, v, rad, convert_to_bgr=False): + """ + Applies the flow color wheel to (possibly clipped) flow components u and v. + + According to the C++ source code of Daniel Scharstein + According to the Matlab source code of Deqing Sun + + Args: + u (torch.tensor): Input horizontal flow of shape [N,H,W] + v (torch.tensor): Input vertical flow of shape [N,H,W] + convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. + + Returns: + torch.tensor: Flow visualization image of shape [N,3,H,W] + """ + flow_image = torch.zeros((u.shape[0], 3, u.shape[1], u.shape[2]), dtype=torch.uint8, device=u.device) + colorwheel = COLORWHEEL.to(u.device) + ncols = colorwheel.shape[0] + a = torch.arctan2(-v, -u) / np.pi + fk = (a + 1) / 2 * (ncols - 1) + k0 = torch.floor(fk).int() + k1 = k0 + 1 + k1[k1 == ncols] = 0 + f = fk - k0 + for i in range(colorwheel.shape[1]): + tmp = colorwheel[:, i] + col0 = tmp[k0] / 255.0 + col1 = tmp[k1] / 255.0 + col = (1 - f) * col0 + f * col1 + idx = rad <= 1 + col[idx] = 1 - rad[idx] * (1 - col[idx]) + col[~idx] = col[~idx] * 0.75 # out of range + # Note the 2-i => BGR instead of RGB + ch_idx = 2 - i if convert_to_bgr else i + flow_image[:, ch_idx, :, :] = torch.floor(255 * col) + return flow_image + +def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): + """ + Adapted from Tora: https://github.com/alibaba/Tora/blob/14db1b0a074284a6c265564eef07f5320911dc00/sat/utils/flow_utils.py#L120 + Expects a two dimensional flow image of shape. + + Args: + flow_uv (torch.Tensor): Flow UV image of shape [N,2,H,W] + clip_flow (float, optional): Clip maximum of flow values. Defaults to None. + convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. + + Returns: + torch.Tensor: Flow visualization image of shape [N,3,H,W] + """ + if clip_flow is not None: + flow_uv = torch.clamp(flow_uv, 0, clip_flow) + u = flow_uv[:, 0] + v = flow_uv[:, 1] + rad = torch.sqrt(u**2 + v**2) + rad_max = torch.max(rad) + epsilon = 1e-5 + u = u / (rad_max + epsilon) + v = v / (rad_max + epsilon) + flow_image = flow_uv_to_colors(u, v, rad, convert_to_bgr) + return flow_image + +def generate_gaussian_template(imgSize=200): + """ Adapted from DragAnything: https://github.com/showlab/DragAnything/blob/79355363218a7eb9b3437a31b8604b6d436d9337/dataset/dataset.py#L110""" + circle_img = np.zeros((imgSize, imgSize), np.float32) + circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1) + + isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32) + + # Guass Map + for i in range(imgSize): + for j in range(imgSize): + isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp( + -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2))) + + isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask + isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32) + isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8) + + # isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40)) + return isotropicGrayscaleImage + +def generate_gaussian_heatmap(tracks, width, height, layer_index, layer_capacity, side=20, offset=True): + heatmap_template = generate_gaussian_template() + num_frames, num_points = tracks.shape[:2] + if isinstance(tracks, torch.Tensor): + tracks = tracks.cpu().numpy() + if offset: + offset_kernel = cv2.resize(heatmap_template / 255, (2 * side + 1, 2 * side + 1)) + offset_kernel /= np.sum(offset_kernel) + offset_kernel /= offset_kernel[side, side] + heatmaps = [] + for frame_idx in range(num_frames): + if offset: + layer_imgs = np.zeros((layer_capacity, height, width, 3), dtype=np.float32) + else: + layer_imgs = np.zeros((layer_capacity, height, width, 1), dtype=np.float32) + layer_heatmaps = [] + for point_idx in range(num_points): + x, y = tracks[frame_idx, point_idx] + layer_id = layer_index[point_idx] + if x < 0 or y < 0 or x >= width or y >= height: + continue + x1 = int(max(x - side, 0)) + x2 = int(min(x + side, width - 1)) + y1 = int(max(y - side, 0)) + y2 = int(min(y + side, height - 1)) + if (x2 - x1) < 1 or (y2 - y1) < 1: + continue + temp_map = cv2.resize(heatmap_template, (x2-x1, y2-y1)) + layer_imgs[layer_id, y1:y2,x1:x2, 0] = np.maximum(layer_imgs[layer_id, y1:y2,x1:x2, 0], temp_map) + if offset: + if frame_idx < num_frames - 1: + next_x, next_y = tracks[frame_idx + 1, point_idx] + else: + next_x, next_y = x, y + layer_imgs[layer_id, int(y), int(x), 1] = next_x - x + layer_imgs[layer_id, int(y), int(x), 2] = next_y - y + for img in layer_imgs: + if offset: + img[:, :, 1:] = cv2.filter2D(img[:, :, 1:], -1, offset_kernel) + else: + img = cv2.cvtColor(img[:, :, 0].astype(np.uint8), cv2.COLOR_GRAY2RGB) + layer_heatmaps.append(img) + heatmaps.append(np.stack(layer_heatmaps, axis=0)) + heatmaps = np.stack(heatmaps, axis=0) + return torch.from_numpy(heatmaps).permute(0, 1, 4, 2, 3).contiguous().float() # [F, N_layer, C, H, W] diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd0d213724be00a3aaf736470a23437b13a7d257 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,21 @@ +accelerate==1.5.2 +decord==0.6.0 +diffusers==0.30.2 +einops==0.8.1 +gradio==5.23.1 +huggingface_hub==0.29.3 +imageio==2.27.0 +imageio-ffmpeg==0.6.0 +matplotlib==3.10.1 +numpy==2.2.4 +omegaconf==2.3.0 +open_clip_torch==2.22.0 +opencv_python==4.11.0.86 +packaging==24.2 +Pillow==11.1.0 +scipy==1.15.2 +spaces==0.34.0 +torch==2.4.0 +torchvision==0.19.0 +transformers==4.46.2 +xformers==0.0.27.post2