Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, List, Optional, Tuple, Union | |
from einops import rearrange, repeat | |
import numpy as np | |
from functools import partial | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock | |
from ..basics import zero_module, conv_nd | |
from ..modules.attention import SpatialTransformer, TemporalTransformer | |
from ..common import checkpoint | |
from diffusers import __version__ | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.model_loading_utils import load_state_dict | |
from diffusers.utils import ( | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
logging, | |
_get_model_file, | |
_add_variant | |
) | |
from omegaconf import ListConfig, DictConfig, OmegaConf | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class ControlNetConditioningEmbedding(nn.Module): | |
""" | |
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
model) to encode image-space conditions ... into feature maps ..." | |
""" | |
def __init__( | |
self, | |
conditioning_embedding_channels: int, | |
conditioning_channels: int = 3, | |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), | |
): | |
super().__init__() | |
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
self.conv_out = zero_module( | |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
) | |
def forward(self, conditioning): | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |
class LayerControlNet(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0.0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
context_dim=None, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
transformer_depth=1, | |
use_linear=False, | |
use_checkpoint=False, | |
temporal_conv=False, | |
tempspatial_aware=False, | |
temporal_attention=True, | |
use_relative_position=True, | |
use_causal_attention=False, | |
temporal_length=None, | |
addition_attention=False, | |
temporal_selfatt_only=True, | |
image_cross_attention=False, | |
image_cross_attention_scale_learnable=False, | |
default_fps=4, | |
fps_condition=False, | |
ignore_noisy_latents=True, | |
condition_channels={}, | |
control_injection_mode='add', | |
use_vae_for_trajectory=False, | |
): | |
super().__init__() | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.temporal_attention = temporal_attention | |
time_embed_dim = model_channels * 4 | |
self.use_checkpoint = use_checkpoint | |
temporal_self_att_only = True | |
self.addition_attention = addition_attention | |
self.temporal_length = temporal_length | |
self.image_cross_attention = image_cross_attention | |
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable | |
self.default_fps = default_fps | |
self.fps_condition = fps_condition | |
self.ignore_noisy_latents = ignore_noisy_latents | |
assert len(condition_channels) > 0, 'Condition types must be specified' | |
self.condition_channels = condition_channels | |
self.control_injection_mode = control_injection_mode | |
self.use_vae_for_trajectory = use_vae_for_trajectory | |
## Time embedding blocks | |
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) | |
if fps_condition: | |
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) | |
nn.init.zeros_(self.fps_embedding.linear_2.weight) | |
nn.init.zeros_(self.fps_embedding.linear_2.bias) | |
if "motion_score" in condition_channels: | |
if control_injection_mode == 'add': | |
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1)) | |
elif control_injection_mode == 'concat': | |
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1)) | |
else: | |
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
if "sketch" in condition_channels: | |
if control_injection_mode == 'add': | |
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1)) | |
elif control_injection_mode == 'concat': | |
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1)) | |
else: | |
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
if "trajectory" in condition_channels: | |
if control_injection_mode == 'add': | |
if use_vae_for_trajectory: | |
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1)) | |
else: | |
self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"]) | |
elif control_injection_mode == 'concat': | |
if use_vae_for_trajectory: | |
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1)) | |
else: | |
self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"]) | |
else: | |
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) | |
] | |
) | |
if self.addition_attention: | |
self.init_attn = TimestepEmbedSequential( | |
TemporalTransformer( | |
model_channels, | |
n_heads=8, | |
d_head=num_head_channels, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, | |
causal_attention=False, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock(ch, time_embed_dim, dropout, | |
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
SpatialTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, disable_self_attn=False, | |
video_length=temporal_length, image_cross_attention=self.image_cross_attention, | |
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
) | |
) | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
if level < len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock(ch, time_embed_dim, dropout, | |
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True | |
) | |
if resblock_updown | |
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
) | |
ch = out_ch | |
ds *= 2 | |
def forward( | |
self, | |
noisy_latents, | |
timesteps, | |
context_text, | |
context_img=None, | |
fps=None, | |
layer_latents=None, # [b, n_layer, t, c, h, w] | |
layer_latent_mask=None, # [b, n_layer, t, 1, h, w] | |
motion_scores=None, # [b, n_layer] | |
sketch=None, # [b, n_layer, t, c, h, w] | |
trajectory=None, # [b, n_layer, t, c, h, w] | |
): | |
if self.ignore_noisy_latents: | |
noisy_latents_shape = list(noisy_latents.shape) | |
noisy_latents_shape[1] = 0 | |
noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype) | |
b, _, t, height, width = noisy_latents.shape | |
n_layer = layer_latents.shape[1] | |
t_emb = self.time_proj(timesteps).type(noisy_latents.dtype) | |
emb = self.time_embed(t_emb) | |
## repeat t times for context [(b t) 77 768] & time embedding | |
## check if we use per-frame image conditioning | |
if context_img is not None: ## decompose context into text and image | |
context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) | |
context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer) | |
context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t) | |
context = torch.cat([context_text, context_img], dim=1) | |
else: | |
context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) | |
emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t) | |
## always in shape (b n t) c h w, except for temporal layer | |
noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer) | |
## combine emb | |
if self.fps_condition: | |
if fps is None: | |
fps = torch.tensor( | |
[self.default_fs] * b, dtype=torch.long, device=noisy_latents.device) | |
fps_emb = self.time_proj(fps).type(noisy_latents.dtype) | |
fps_embed = self.fps_embedding(fps_emb) | |
fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t) | |
emb = emb + fps_embed | |
## process conditions | |
layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3) | |
layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w') | |
h = torch.cat([noisy_latents, layer_condition], dim=1) | |
if "motion_score" in self.condition_channels: | |
motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width) | |
motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3) | |
motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w') | |
motion_condition = self.motion_embedding(motion_condition) | |
if self.control_injection_mode == 'concat': | |
h = torch.cat([h, motion_condition], dim=1) | |
if "sketch" in self.condition_channels: | |
sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w') | |
sketch_condition = self.sketch_embedding(sketch_condition) | |
if self.control_injection_mode == 'concat': | |
h = torch.cat([h, sketch_condition], dim=1) | |
if "trajectory" in self.condition_channels: | |
traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w') | |
traj_condition = self.trajectory_embedding(traj_condition) | |
if self.control_injection_mode == 'concat': | |
h = torch.cat([h, traj_condition], dim=1) | |
layer_features = [] | |
for id, module in enumerate(self.input_blocks): | |
h = module(h, emb, context=context, batch_size=b*n_layer) | |
if id == 0: | |
if self.control_injection_mode == 'add': | |
if "motion_score" in self.condition_channels: | |
h = h + motion_condition | |
if "sketch" in self.condition_channels: | |
h = h + sketch_condition | |
if "trajectory" in self.condition_channels: | |
h = h + traj_condition | |
if self.addition_attention: | |
h = self.init_attn(h, emb, context=context, batch_size=b*n_layer) | |
if SpatialTransformer in [type(m) for m in module]: | |
layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer)) | |
return layer_features | |
def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs): | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
variant = kwargs.pop("variant", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, unused_kwargs, commit_hash = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
for key, value in layer_controlnet_additional_kwargs.items(): | |
if isinstance(value, (ListConfig, DictConfig)): | |
config[key] = OmegaConf.to_container(value, resolve=True) | |
else: | |
config[key] = value | |
# load model | |
model_file = None | |
if use_safetensors: | |
try: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
except IOError as e: | |
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
if not allow_pickle: | |
raise | |
logger.warning( | |
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
) | |
if model_file is None: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
model = cls.from_config(config, **unused_kwargs) | |
state_dict = load_state_dict(model_file, variant) | |
if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]: | |
state_dict.pop('input_blocks.0.0.weight') | |
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") | |
return model |