Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| from einops import rearrange, repeat | |
| import numpy as np | |
| from functools import partial | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock | |
| from ..basics import zero_module, conv_nd | |
| from ..modules.attention import SpatialTransformer, TemporalTransformer | |
| from ..common import checkpoint | |
| from diffusers import __version__ | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from diffusers.utils import ( | |
| SAFETENSORS_WEIGHTS_NAME, | |
| WEIGHTS_NAME, | |
| logging, | |
| _get_model_file, | |
| _add_variant | |
| ) | |
| from omegaconf import ListConfig, DictConfig, OmegaConf | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class ControlNetConditioningEmbedding(nn.Module): | |
| """ | |
| Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
| [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
| training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
| convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
| (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
| model) to encode image-space conditions ... into feature maps ..." | |
| """ | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int, | |
| conditioning_channels: int = 3, | |
| block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), | |
| ): | |
| super().__init__() | |
| self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
| self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
| self.conv_out = zero_module( | |
| nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
| ) | |
| def forward(self, conditioning): | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding | |
| class LayerControlNet(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels, | |
| model_channels, | |
| out_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0.0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| context_dim=None, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| transformer_depth=1, | |
| use_linear=False, | |
| use_checkpoint=False, | |
| temporal_conv=False, | |
| tempspatial_aware=False, | |
| temporal_attention=True, | |
| use_relative_position=True, | |
| use_causal_attention=False, | |
| temporal_length=None, | |
| addition_attention=False, | |
| temporal_selfatt_only=True, | |
| image_cross_attention=False, | |
| image_cross_attention_scale_learnable=False, | |
| default_fps=4, | |
| fps_condition=False, | |
| ignore_noisy_latents=True, | |
| condition_channels={}, | |
| control_injection_mode='add', | |
| use_vae_for_trajectory=False, | |
| ): | |
| super().__init__() | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| self.num_res_blocks = num_res_blocks | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.temporal_attention = temporal_attention | |
| time_embed_dim = model_channels * 4 | |
| self.use_checkpoint = use_checkpoint | |
| temporal_self_att_only = True | |
| self.addition_attention = addition_attention | |
| self.temporal_length = temporal_length | |
| self.image_cross_attention = image_cross_attention | |
| self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable | |
| self.default_fps = default_fps | |
| self.fps_condition = fps_condition | |
| self.ignore_noisy_latents = ignore_noisy_latents | |
| assert len(condition_channels) > 0, 'Condition types must be specified' | |
| self.condition_channels = condition_channels | |
| self.control_injection_mode = control_injection_mode | |
| self.use_vae_for_trajectory = use_vae_for_trajectory | |
| ## Time embedding blocks | |
| self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) | |
| if fps_condition: | |
| self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) | |
| nn.init.zeros_(self.fps_embedding.linear_2.weight) | |
| nn.init.zeros_(self.fps_embedding.linear_2.bias) | |
| if "motion_score" in condition_channels: | |
| if control_injection_mode == 'add': | |
| self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1)) | |
| elif control_injection_mode == 'concat': | |
| self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1)) | |
| else: | |
| raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
| if "sketch" in condition_channels: | |
| if control_injection_mode == 'add': | |
| self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1)) | |
| elif control_injection_mode == 'concat': | |
| self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1)) | |
| else: | |
| raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
| if "trajectory" in condition_channels: | |
| if control_injection_mode == 'add': | |
| if use_vae_for_trajectory: | |
| self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1)) | |
| else: | |
| self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"]) | |
| elif control_injection_mode == 'concat': | |
| if use_vae_for_trajectory: | |
| self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1)) | |
| else: | |
| self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"]) | |
| else: | |
| raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'") | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) | |
| ] | |
| ) | |
| if self.addition_attention: | |
| self.init_attn = TimestepEmbedSequential( | |
| TemporalTransformer( | |
| model_channels, | |
| n_heads=8, | |
| d_head=num_head_channels, | |
| depth=transformer_depth, | |
| context_dim=context_dim, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, | |
| causal_attention=False, relative_position=use_relative_position, | |
| temporal_length=temporal_length | |
| ) | |
| ) | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for _ in range(num_res_blocks): | |
| layers = [ | |
| ResBlock(ch, time_embed_dim, dropout, | |
| out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
| use_temporal_conv=temporal_conv | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers.append( | |
| SpatialTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, disable_self_attn=False, | |
| video_length=temporal_length, image_cross_attention=self.image_cross_attention, | |
| image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
| ) | |
| ) | |
| if self.temporal_attention: | |
| layers.append( | |
| TemporalTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
| causal_attention=use_causal_attention, relative_position=use_relative_position, | |
| temporal_length=temporal_length | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| if level < len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock(ch, time_embed_dim, dropout, | |
| out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True | |
| ) | |
| if resblock_updown | |
| else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ) | |
| ch = out_ch | |
| ds *= 2 | |
| def forward( | |
| self, | |
| noisy_latents, | |
| timesteps, | |
| context_text, | |
| context_img=None, | |
| fps=None, | |
| layer_latents=None, # [b, n_layer, t, c, h, w] | |
| layer_latent_mask=None, # [b, n_layer, t, 1, h, w] | |
| motion_scores=None, # [b, n_layer] | |
| sketch=None, # [b, n_layer, t, c, h, w] | |
| trajectory=None, # [b, n_layer, t, c, h, w] | |
| ): | |
| if self.ignore_noisy_latents: | |
| noisy_latents_shape = list(noisy_latents.shape) | |
| noisy_latents_shape[1] = 0 | |
| noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype) | |
| b, _, t, height, width = noisy_latents.shape | |
| n_layer = layer_latents.shape[1] | |
| t_emb = self.time_proj(timesteps).type(noisy_latents.dtype) | |
| emb = self.time_embed(t_emb) | |
| ## repeat t times for context [(b t) 77 768] & time embedding | |
| ## check if we use per-frame image conditioning | |
| if context_img is not None: ## decompose context into text and image | |
| context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) | |
| context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer) | |
| context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t) | |
| context = torch.cat([context_text, context_img], dim=1) | |
| else: | |
| context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t) | |
| emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t) | |
| ## always in shape (b n t) c h w, except for temporal layer | |
| noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer) | |
| ## combine emb | |
| if self.fps_condition: | |
| if fps is None: | |
| fps = torch.tensor( | |
| [self.default_fs] * b, dtype=torch.long, device=noisy_latents.device) | |
| fps_emb = self.time_proj(fps).type(noisy_latents.dtype) | |
| fps_embed = self.fps_embedding(fps_emb) | |
| fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t) | |
| emb = emb + fps_embed | |
| ## process conditions | |
| layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3) | |
| layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w') | |
| h = torch.cat([noisy_latents, layer_condition], dim=1) | |
| if "motion_score" in self.condition_channels: | |
| motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width) | |
| motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3) | |
| motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w') | |
| motion_condition = self.motion_embedding(motion_condition) | |
| if self.control_injection_mode == 'concat': | |
| h = torch.cat([h, motion_condition], dim=1) | |
| if "sketch" in self.condition_channels: | |
| sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w') | |
| sketch_condition = self.sketch_embedding(sketch_condition) | |
| if self.control_injection_mode == 'concat': | |
| h = torch.cat([h, sketch_condition], dim=1) | |
| if "trajectory" in self.condition_channels: | |
| traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w') | |
| traj_condition = self.trajectory_embedding(traj_condition) | |
| if self.control_injection_mode == 'concat': | |
| h = torch.cat([h, traj_condition], dim=1) | |
| layer_features = [] | |
| for id, module in enumerate(self.input_blocks): | |
| h = module(h, emb, context=context, batch_size=b*n_layer) | |
| if id == 0: | |
| if self.control_injection_mode == 'add': | |
| if "motion_score" in self.condition_channels: | |
| h = h + motion_condition | |
| if "sketch" in self.condition_channels: | |
| h = h + sketch_condition | |
| if "trajectory" in self.condition_channels: | |
| h = h + traj_condition | |
| if self.addition_attention: | |
| h = self.init_attn(h, emb, context=context, batch_size=b*n_layer) | |
| if SpatialTransformer in [type(m) for m in module]: | |
| layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer)) | |
| return layer_features | |
| def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs): | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| variant = kwargs.pop("variant", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, unused_kwargs, commit_hash = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| for key, value in layer_controlnet_additional_kwargs.items(): | |
| if isinstance(value, (ListConfig, DictConfig)): | |
| config[key] = OmegaConf.to_container(value, resolve=True) | |
| else: | |
| config[key] = value | |
| # load model | |
| model_file = None | |
| if use_safetensors: | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| except IOError as e: | |
| logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
| if not allow_pickle: | |
| raise | |
| logger.warning( | |
| "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
| ) | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| model = cls.from_config(config, **unused_kwargs) | |
| state_dict = load_state_dict(model_file, variant) | |
| if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]: | |
| state_dict.pop('input_blocks.0.0.weight') | |
| missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
| print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") | |
| return model |