Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from diffusers.utils import is_accelerate_available | |
from ..models.unet import UNetModel | |
from ..models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref | |
from ..models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler | |
from ..models.layer_controlnet import LayerControlNet | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg | |
from einops import rearrange | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class AnimationPipelineOutput(BaseOutput): | |
videos: Union[List[Image.Image], np.ndarray] | |
class AnimationPipeline(DiffusionPipeline): | |
model_cpu_offload_seq = "image_encoder->unet->vae" | |
_callback_tensor_inputs = ["latents"] | |
def __init__( | |
self, | |
vae, | |
vae_dualref, | |
text_encoder, | |
image_encoder, | |
image_projector, | |
unet: UNetModel, | |
layer_controlnet: LayerControlNet, | |
scheduler: DDIMScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
vae_dualref=vae_dualref, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
image_projector=image_projector, | |
unet=unet, | |
layer_controlnet=layer_controlnet, | |
scheduler=scheduler, | |
) | |
if vae is not None: | |
self.vae_scale_factor = 2 ** (len(self.vae.config.ddconfig["ch_mult"]) - 1) | |
else: | |
self.vae_scale_factor = 2 ** (len(self.vae_dualref.config.ddconfig["ch_mult"]) - 1) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.layer_encoder, self.text_encoder, self.vae, self.vae_dualref]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
text_embeddings = self.text_encoder(prompt) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
uncond_embeddings = self.text_encoder(uncond_tokens) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance): | |
batch_size = image.shape[0] | |
image_embeddings = self.image_encoder(image) | |
image_embeddings = self.image_projector(image_embeddings) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_embeddings = self.image_encoder(torch.zeros_like(image)) | |
uncond_embeddings = self.image_projector(uncond_embeddings) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and image embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([uncond_embeddings, image_embeddings]) | |
return image_embeddings | |
def _encode_controls( | |
self, | |
layer_masks, | |
layer_regions, | |
layer_validity, | |
motion_scores, | |
layer_static, | |
trajectories, | |
sketches, | |
video_length, | |
mode, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance | |
): | |
vae = self.vae if self.vae is not None else self.vae_dualref | |
batch_size, n_layers = layer_masks.shape[:2] | |
# Frame decomposition | |
layer_regions = rearrange(layer_regions, "b n f c h w -> (b n f) c h w") | |
keyframe_layer_latents = vae.encode(layer_regions)[0].sample() * 0.18215 | |
keyframe_layer_latents = rearrange(keyframe_layer_latents, "(b n f) c h w -> b n f c h w", b=batch_size, n=n_layers) | |
layer_latents_shape = list(keyframe_layer_latents.shape) | |
layer_latents_shape[2] = video_length | |
layer_latents = torch.zeros(layer_latents_shape, device=device, dtype=keyframe_layer_latents.dtype) | |
resized_layer_masks = rearrange(layer_masks, "b n f c h w -> (b n f) c h w") | |
resized_layer_masks = F.interpolate(resized_layer_masks.float(), size=layer_latents.shape[-2:], mode="bilinear") | |
resized_layer_masks = rearrange(resized_layer_masks, "(b n f) c h w -> b n f c h w", b=batch_size, n=n_layers).to(dtype=layer_latents.dtype) | |
layer_latent_mask_shape = list(resized_layer_masks.shape) | |
layer_latent_mask_shape[2] = video_length | |
layer_latent_mask = torch.zeros(layer_latent_mask_shape, device=device, dtype=resized_layer_masks.dtype) | |
for batch_idx in range(batch_size): | |
if mode != "interpolate": | |
layer_latents[batch_idx, :, 0] = keyframe_layer_latents[batch_idx, :, 0] | |
layer_latent_mask[batch_idx, :, 0] = resized_layer_masks[batch_idx, :, 0] | |
if layer_static[batch_idx].any(): | |
static_indices = torch.nonzero(layer_static[batch_idx]).squeeze(1) | |
layer_latents[batch_idx, static_indices, :] = keyframe_layer_latents[batch_idx, static_indices, 0:1].repeat(1, video_length, 1, 1, 1) | |
layer_latent_mask[batch_idx, static_indices, :] = resized_layer_masks[batch_idx, static_indices, 0:1].repeat(1, video_length, 1, 1, 1) | |
else: | |
layer_latents[batch_idx, :, 0] = keyframe_layer_latents[batch_idx, :, 0] | |
layer_latents[batch_idx, :, -1] = keyframe_layer_latents[batch_idx, :, -1] | |
layer_latent_mask[batch_idx, :, 0] = resized_layer_masks[batch_idx, :, 0] | |
layer_latent_mask[batch_idx, :, -1] = resized_layer_masks[batch_idx, :, -1] | |
if layer_static[batch_idx].any(): | |
static_indices = torch.nonzero(layer_static[batch_idx]).squeeze(1) | |
layer_latents[batch_idx, static_indices, :video_length//2] = keyframe_layer_latents[batch_idx, static_indices, 0:1].repeat(1, video_length//2, 1, 1, 1) | |
layer_latents[batch_idx, static_indices, video_length//2:] = keyframe_layer_latents[batch_idx, static_indices, -1:].repeat(1, video_length//2, 1, 1, 1) | |
layer_latent_mask[batch_idx, static_indices, :video_length//2] = resized_layer_masks[batch_idx, static_indices, 0:1].repeat(1, video_length//2, 1, 1, 1) | |
layer_latent_mask[batch_idx, static_indices, video_length//2:] = resized_layer_masks[batch_idx, static_indices, -1:].repeat(1, video_length//2, 1, 1, 1) | |
layer_latents = torch.repeat_interleave(layer_latents, num_videos_per_prompt, dim=0) | |
layer_latent_mask = torch.repeat_interleave(layer_latent_mask, num_videos_per_prompt, dim=0) | |
layer_validity = torch.repeat_interleave(layer_validity, num_videos_per_prompt, dim=0) | |
sketches = rearrange(sketches, 'b n f c h w -> (b n f) c h w') | |
layer_sketch_latents = vae.encode(sketches)[0].sample() * 0.18215 | |
layer_sketch_latents = rearrange(layer_sketch_latents, '(b n f) c h w -> b n f c h w', b=batch_size, n=n_layers) | |
layer_sketch_latents = torch.repeat_interleave(layer_sketch_latents, num_videos_per_prompt, dim=0) | |
trajectories = torch.repeat_interleave(trajectories, num_videos_per_prompt, dim=0) | |
motion_scores = torch.repeat_interleave(motion_scores, num_videos_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
layer_latents = torch.cat([layer_latents, layer_latents], dim=0) | |
layer_latent_mask = torch.cat([layer_latent_mask, layer_latent_mask], dim=0) | |
motion_scores = torch.cat([motion_scores, motion_scores], dim=0) | |
layer_sketch_latents = torch.cat([layer_sketch_latents, layer_sketch_latents], dim=0) | |
trajectories = torch.cat([trajectories, trajectories], dim=0) | |
layer_validity = torch.cat([layer_validity, layer_validity], dim=0) | |
return dict( | |
layer_latents=layer_latents, | |
layer_latent_mask=layer_latent_mask, | |
motion_scores=motion_scores, | |
sketch=layer_sketch_latents, | |
trajectory=trajectories, | |
layer_validity=layer_validity, | |
) | |
def get_latent_z_with_hidden_states(self, videos): | |
b, f, c, h, w = videos.shape | |
x = rearrange(videos, 'b f c h w -> (b f) c h w') | |
encoder_posterior, hidden_states = self.vae_dualref.encode(x, return_hidden_states=True) | |
hidden_states_first_last = [] | |
### use only the first and last hidden states | |
for hid in hidden_states: | |
hid = rearrange(hid, '(b f) c h w -> b c f h w', f=f) | |
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) | |
hidden_states_first_last.append(hid_new.float()) | |
z = encoder_posterior[0].sample() * 0.18215 | |
z = rearrange(z, '(b f) c h w -> b c f h w', b=b, f=f).detach() | |
return z, hidden_states_first_last | |
def get_latent_z(self, videos): | |
b, f, c, h, w = videos.shape | |
x = rearrange(videos, 'b f c h w -> (b f) c h w') | |
z = self.vae.encode(x)[0].sample() * 0.18215 | |
z = rearrange(z, '(b f) c h w -> b c f h w', b=b, f=f).detach() | |
return z | |
def decode_latents(self, latents): | |
batch_size = latents.shape[0] | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for batch_idx in range(batch_size): | |
video.append(self.vae.decode(latents[batch_idx * video_length:(batch_idx + 1) * video_length]).sample) | |
video = torch.cat(video, dim=0) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def decode_latents_with_hidden_states(self, latents, hidden_states): | |
batch_size = latents.shape[0] | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for batch_idx in range(batch_size): | |
video.append(self.vae_dualref.decode(latents[batch_idx * video_length:(batch_idx + 1) * video_length].float(), ref_context=hidden_states, timesteps=video_length).sample) | |
video = torch.cat(video, dim=0) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
video_length: int, | |
height: int, | |
width: int, | |
frame_tensor: torch.FloatTensor, | |
layer_masks: torch.FloatTensor, # [b, n_layers, 1 (2), c, h, w] | |
layer_regions: torch.FloatTensor, # [b, n_layers, 1 (2), c, h, w] | |
layer_static: torch.Tensor, # [b, n_layers] | |
motion_scores: torch.Tensor, # [b, n_layers] | |
sketch: torch.FloatTensor, # [b, n_layers, f, c, h, w] | |
trajectory: torch.FloatTensor, # [b, n_layers, f, c, h, w] | |
layer_validity: torch.Tensor, # [b, n_layers] | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
guidance_rescale: float=0.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
fps: Optional[int] = 24, | |
mode: str = "interpolate", | |
weight_dtype: torch.dtype = torch.float32, | |
**kwargs, | |
): | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = len(frame_tensor) | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
fps = torch.tensor([fps] * batch_size * num_videos_per_prompt, device=device, dtype=weight_dtype) | |
frame_tensor = frame_tensor.to(dtype=weight_dtype) | |
layer_regions = layer_regions.to(dtype=weight_dtype) | |
motion_scores = motion_scores.to(dtype=weight_dtype) | |
sketch = sketch.to(dtype=weight_dtype) | |
trajectory = trajectory.to(dtype=weight_dtype) | |
# Encode layer-level controls | |
encoded_layer_controls = self._encode_controls( | |
layer_masks, | |
layer_regions, | |
layer_validity, | |
motion_scores, | |
layer_static, | |
trajectory, | |
sketch, | |
video_length, | |
mode, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance | |
) | |
layer_validity = encoded_layer_controls.pop("layer_validity") | |
# Encode input prompt | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
cond_frame = frame_tensor[:, 0] # [b, f, c, h, w] -> [b, c, h, w] | |
image_embeddings = self._encode_image( | |
cond_frame, device, num_videos_per_prompt, do_classifier_free_guidance | |
) | |
if mode == "interpolate": | |
z, hidden_states = self.get_latent_z_with_hidden_states(frame_tensor) | |
else: | |
z = self.get_latent_z(frame_tensor) | |
z = z.to(dtype=weight_dtype) | |
if mode != "interpolate": | |
img_cat_cond = z[:, :, :1] | |
img_cat_cond = img_cat_cond.repeat(1, 1, video_length, 1, 1) | |
else: | |
img_cat_cond = torch.zeros_like(z[:, :, :1].repeat(1, 1, video_length, 1, 1)) | |
img_cat_cond[:, :, 0] = z[:, :, 0] | |
img_cat_cond[:, :, -1] = z[:, :, -1] | |
img_cat_cond = torch.repeat_interleave(img_cat_cond, num_videos_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
img_cat_cond = torch.cat([img_cat_cond, img_cat_cond], dim=0) | |
fps = torch.cat([fps, fps], dim=0) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# Prepare latent variables | |
num_channels_latents = self.unet.out_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
video_length, | |
height, | |
width, | |
weight_dtype, | |
device, | |
generator, | |
) | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
noise_with_img = torch.cat([latent_model_input, img_cat_cond], dim=1) | |
if do_classifier_free_guidance: | |
ts = torch.full((batch_size * num_videos_per_prompt * 2,), t, device=device, dtype=torch.long) | |
else: | |
ts = torch.full((batch_size * num_videos_per_prompt,), t, device=device, dtype=torch.long) | |
layer_features = self.layer_controlnet( | |
noise_with_img, ts, | |
context_text=text_embeddings, | |
context_img=image_embeddings, | |
fps=fps, | |
**encoded_layer_controls | |
) | |
noise_pred = self.unet( | |
noise_with_img, ts, | |
context_text=text_embeddings, | |
context_img=image_embeddings, | |
fps=fps, | |
controls=layer_features, | |
layer_validity=layer_validity, | |
).sample.to(dtype=weight_dtype) | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_cond, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# Post-processing | |
if mode == "interpolate": | |
video = self.decode_latents_with_hidden_states(latents, hidden_states) | |
else: | |
video = self.decode_latents(latents) | |
# Convert to tensor | |
if output_type == "tensor": | |
video = torch.from_numpy(video) | |
if not return_dict: | |
return video | |
return AnimationPipelineOutput(videos=video) | |