Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py | |
from dataclasses import dataclass | |
import os | |
from os import PathLike | |
from typing import List, Mapping, Optional, Tuple, Union | |
from functools import partial | |
from abc import abstractmethod | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from diffusers import __version__ | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models import ModelMixin | |
from diffusers.utils import ( | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
BaseOutput, | |
logging, | |
_get_model_file, | |
_add_variant | |
) | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.model_loading_utils import load_state_dict | |
from ..common import checkpoint | |
from ..basics import avg_pool_nd, conv_nd, zero_module | |
from ..modules.attention import SpatialTransformer, TemporalTransformer, CrossAttention | |
from omegaconf import ListConfig, DictConfig, OmegaConf | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb, context=None, batch_size=None, **kwargs): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb, batch_size=batch_size) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context, **kwargs) | |
elif isinstance(layer, TemporalTransformer): | |
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) | |
x = layer(x, context) | |
x = rearrange(x, 'b c f h w -> (b f) c h w') | |
else: | |
x = layer(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') | |
else: | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
:param use_temporal_conv: if True, use the temporal convolution. | |
:param use_image_dataset: if True, the temporal parameters will not be optimized. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
use_temporal_conv=False, | |
tempspatial_aware=False | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.use_temporal_conv = use_temporal_conv | |
self.in_layers = nn.Sequential( | |
nn.GroupNorm(32, channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
nn.GroupNorm(32, self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
if self.use_temporal_conv: | |
self.temopral_conv = TemporalConvBlock( | |
self.out_channels, | |
self.out_channels, | |
dropout=0.1, | |
spatial_aware=tempspatial_aware | |
) | |
def forward(self, x, emb, batch_size=None): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
input_tuple = (x, emb) | |
if batch_size: | |
forward_batchsize = partial(self._forward, batch_size=batch_size) | |
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) | |
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) | |
def _forward(self, x, emb, batch_size=None): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
h = self.skip_connection(x) + h | |
if self.use_temporal_conv and batch_size: | |
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) | |
h = self.temopral_conv(h) | |
h = rearrange(h, 'b c t h w -> (b t) c h w') | |
return h | |
class TemporalConvBlock(nn.Module): | |
""" | |
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py | |
""" | |
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False): | |
super(TemporalConvBlock, self).__init__() | |
if out_channels is None: | |
out_channels = in_channels | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) | |
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) | |
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) | |
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_channels), nn.SiLU(), | |
nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape)) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape)) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.conv3(x) | |
x = self.conv4(x) | |
return identity + x | |
class UNetModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
class UNetModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0.0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
context_dim=None, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
transformer_depth=1, | |
use_linear=False, | |
use_checkpoint=False, | |
temporal_conv=False, | |
tempspatial_aware=False, | |
temporal_attention=True, | |
use_relative_position=True, | |
use_causal_attention=False, | |
temporal_length=None, | |
addition_attention=False, | |
temporal_selfatt_only=True, | |
image_cross_attention=False, | |
image_cross_attention_scale_learnable=False, | |
masked_layer_fusion=False, | |
default_fps=4, | |
fps_condition=False, | |
): | |
super().__init__() | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.temporal_attention = temporal_attention | |
time_embed_dim = model_channels * 4 | |
self.use_checkpoint = use_checkpoint | |
temporal_self_att_only = True | |
self.addition_attention = addition_attention | |
self.temporal_length = temporal_length | |
self.image_cross_attention = image_cross_attention | |
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable | |
self.default_fps = default_fps | |
self.fps_condition = fps_condition | |
## Time embedding blocks | |
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim) | |
if fps_condition: | |
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim) | |
nn.init.zeros_(self.fps_embedding.linear_2.weight) | |
nn.init.zeros_(self.fps_embedding.linear_2.bias) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) | |
] | |
) | |
if self.addition_attention: | |
self.init_attn = TimestepEmbedSequential( | |
TemporalTransformer( | |
model_channels, | |
n_heads=8, | |
d_head=num_head_channels, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, | |
causal_attention=False, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock(ch, time_embed_dim, dropout, | |
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
SpatialTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, disable_self_attn=False, | |
video_length=temporal_length, image_cross_attention=self.image_cross_attention, | |
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
) | |
) | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock(ch, time_embed_dim, dropout, | |
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True | |
) | |
if resblock_updown | |
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers = [ | |
ResBlock(ch, time_embed_dim, dropout, | |
dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv | |
), | |
SpatialTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, | |
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable | |
) | |
] | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
layers.append( | |
ResBlock(ch, time_embed_dim, dropout, | |
dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv | |
) | |
) | |
## Middle Block | |
self.middle_block = TimestepEmbedSequential(*layers) | |
## Output Block | |
self.output_blocks = nn.ModuleList([]) | |
self.masked_layer_fusion = masked_layer_fusion | |
if self.masked_layer_fusion: | |
self.masked_layer_fusion_norm_list = nn.ModuleList([]) | |
self.masked_layer_fusion_attn_list = nn.ModuleList([]) | |
self.masked_layer_fusion_out_list = nn.ModuleList([]) | |
self.layer_feature_block_indices = [] | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
input_channel = ch | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock(ch + ich, time_embed_dim, dropout, | |
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if self.masked_layer_fusion and i < num_res_blocks: | |
self.masked_layer_fusion_norm_list.append(nn.LayerNorm(input_channel)) | |
self.masked_layer_fusion_attn_list.append( | |
CrossAttention( | |
query_dim=input_channel, | |
context_dim=ch, | |
dim_head=dim_head, | |
heads=num_heads, | |
use_xformers=False, | |
) | |
) | |
self.masked_layer_fusion_out_list.append( | |
zero_module(conv_nd(dims, input_channel, ch, 3, padding=1)) | |
) | |
self.layer_feature_block_indices.append(len(self.output_blocks)) | |
layers.append( | |
SpatialTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, | |
image_cross_attention=self.image_cross_attention, image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable | |
) | |
) | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer(ch, num_heads, dim_head, | |
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, relative_position=use_relative_position, | |
temporal_length=temporal_length | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
layers.append( | |
ResBlock(ch, time_embed_dim, dropout, | |
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self.out = nn.Sequential( | |
nn.GroupNorm(32, ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
def forward(self, x, timesteps, context_text, context_img=None, controls=None, layer_validity=None, fps=None, **kwargs): | |
b, _, t, _, _ = x.shape | |
t_emb = self.time_proj(timesteps).type(x.dtype) | |
emb = self.time_embed(t_emb) | |
## repeat t times for context [(b t) 77 768] & time embedding | |
## check if we use per-frame image conditioning | |
if context_img is not None: ## decompose context into text and image | |
context_text = context_text.repeat_interleave(repeats=t, dim=0) | |
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t) | |
context = torch.cat([context_text, context_img], dim=1) | |
else: | |
context = context_text.repeat_interleave(repeats=t, dim=0) | |
emb = emb.repeat_interleave(repeats=t, dim=0) | |
## always in shape (b t) c h w, except for temporal layer | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
## combine emb | |
if self.fps_condition: | |
if fps is None: | |
fps = torch.tensor( | |
[self.default_fs] * b, dtype=torch.long, device=x.device) | |
fps_emb = self.time_proj(fps).type(x.dtype) | |
fps_embed = self.fps_embedding(fps_emb) | |
fps_embed = fps_embed.repeat_interleave(repeats=t, dim=0) | |
emb = emb + fps_embed | |
h = x.type(self.dtype) | |
hs = [] | |
for id, module in enumerate(self.input_blocks): | |
h = module(h, emb, context=context, batch_size=b) | |
if id == 0 and self.addition_attention: | |
h = self.init_attn(h, emb, context=context, batch_size=b) | |
hs.append(h) | |
h = self.middle_block(h, emb, context=context, batch_size=b) | |
layer_fusion_idx = 0 | |
for id, module in enumerate(self.output_blocks): | |
skip = hs.pop() | |
if controls is not None and len(controls) > 0 and id in self.layer_feature_block_indices: | |
layer_features = controls.pop() | |
feature_h, feature_w = layer_features.shape[-2:] | |
layer_features = rearrange(layer_features, 'b n t c h w -> (b t h w) n c') | |
frame_features = rearrange(h, '(b t) c h w -> (b t) (h w) c', b=b) | |
frame_features = self.masked_layer_fusion_norm_list[layer_fusion_idx](frame_features) | |
frame_features = rearrange(frame_features, '(b t) (h w) c -> (b t h w) 1 c', b=b, t=t, h=feature_h, w=feature_w) | |
fused_features = self.masked_layer_fusion_attn_list[layer_fusion_idx]( | |
frame_features, | |
layer_features, | |
mask=repeat(layer_validity, "b n -> (b t h w) 1 n", t=t, h=feature_h, w=feature_w) | |
) | |
fused_features = rearrange(fused_features, '(b t h w) 1 c -> (b t) c h w', b=b, t=t, h=feature_h, w=feature_w) | |
fused_features = self.masked_layer_fusion_out_list[layer_fusion_idx](fused_features) | |
skip += fused_features | |
layer_fusion_idx += 1 | |
h = torch.cat([h, skip], dim=1) | |
h = module(h, emb, context=context, batch_size=b) | |
h = h.type(x.dtype) | |
y = self.out(h) | |
# reshape back to (b c t h w) | |
y = rearrange(y, '(b t) c h w -> b c t h w', b=b) | |
return UNetModelOutput(sample=y) | |
def from_pretrained(cls, pretrained_model_name_or_path, unet_additional_kwargs={}, **kwargs): | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
variant = kwargs.pop("variant", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, unused_kwargs, commit_hash = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
for key, value in unet_additional_kwargs.items(): | |
if isinstance(value, (ListConfig, DictConfig)): | |
config[key] = OmegaConf.to_container(value, resolve=True) | |
else: | |
config[key] = value | |
# load model | |
model_file = None | |
if use_safetensors: | |
try: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
except IOError as e: | |
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
if not allow_pickle: | |
raise | |
logger.warning( | |
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
) | |
if model_file is None: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
model = cls.from_config(config, **unused_kwargs) | |
state_dict = load_state_dict(model_file, variant) | |
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
print(f"UNetModel loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.") | |
return model |