LayerAnimate / lvdm /models /controlnet.py
YuxueYang
Upload demo
2a59fa8
raw
history blame
19.8 kB
from typing import Any, Dict, List, Optional, Tuple, Union
from einops import rearrange, repeat
import numpy as np
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock
from ..basics import zero_module, conv_nd
from ..modules.attention import SpatialTransformer, TemporalTransformer
from ..common import checkpoint
from diffusers import __version__
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
logging,
_get_model_file,
_add_variant
)
from omegaconf import ListConfig, DictConfig, OmegaConf
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class ResBlock_v2(nn.Module):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
use_checkpoint=False,
use_conv=False,
up=False,
down=False,
use_temporal_conv=False,
tempspatial_aware=False
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_temporal_conv = use_temporal_conv
self.in_layers = nn.Sequential(
nn.GroupNorm(32, channels),
nn.SiLU(),
zero_module(conv_nd(dims, channels, self.out_channels, 3, padding=1)),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
if self.use_temporal_conv:
self.temopral_conv = TemporalConvBlock(
self.out_channels,
self.out_channels,
dropout=0.1,
spatial_aware=tempspatial_aware
)
def forward(self, x, batch_size=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:return: an [N x C x ...] Tensor of outputs.
"""
input_tuple = (x, )
if batch_size:
forward_batchsize = partial(self._forward, batch_size=batch_size)
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
def _forward(self, x, batch_size=None):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
h = self.skip_connection(x) + h
if self.use_temporal_conv and batch_size:
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
h = self.temopral_conv(h)
h = rearrange(h, 'b c t h w -> (b t) c h w')
return h
class TrajectoryEncoder(nn.Module):
def __init__(self, cin, time_embed_dim, channels=[320, 640, 1280, 1280], nums_rb=3,
dropout=0.0, use_checkpoint=False, tempspatial_aware=False, temporal_conv=False):
super(TrajectoryEncoder, self).__init__()
# self.unshuffle = nn.PixelUnshuffle(8)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
# self.conv_out = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i != 0) and (j == 0):
self.body.append(
ResBlock_v2(channels[i - 1], time_embed_dim, dropout,
out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
down=True
)
)
else:
self.body.append(
ResBlock_v2(channels[i], time_embed_dim, dropout,
out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
down=False
)
)
self.body.append(
ResBlock_v2(channels[-1], time_embed_dim, dropout,
out_channels=channels[-1], dims=2, use_checkpoint=use_checkpoint,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
down=True
)
)
self.body = nn.ModuleList(self.body)
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
self.conv_out = zero_module(conv_nd(2, channels[-1], channels[-1], 3, 1, 1))
def forward(self, x, batch_size=None):
# unshuffle
# x = self.unshuffle(x)
# extract features
# features = []
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x, batch_size)
x = self.body[-1](x, batch_size)
out = self.conv_out(x)
return out
class ControlNet(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fps=4,
fps_condition=False,
ignore_noisy_latents=True,
conditioning_channels=4,
):
super().__init__()
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
self.default_fps = default_fps
self.fps_condition = fps_condition
self.ignore_noisy_latents = ignore_noisy_latents
## Time embedding blocks
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim)
if fps_condition:
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim)
nn.init.zeros_(self.fps_embedding.linear_2.weight)
nn.init.zeros_(self.fps_embedding.linear_2.bias)
# self.cond_embedding = TrajectoryEncoder(
# cin=conditioning_channels, time_embed_dim=time_embed_dim, channels=trajectory_channels, nums_rb=3,
# dropout=dropout, use_checkpoint=use_checkpoint, tempspatial_aware=tempspatial_aware, temporal_conv=False
# )
self.cond_embedding = zero_module(conv_nd(dims, conditioning_channels, model_channels, 3, padding=1))
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
]
)
## Output Block
self.downsample_output = nn.ModuleList(
[
nn.Sequential(
nn.GroupNorm(32, model_channels),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, model_channels, 3, padding=1))
)
]
)
if self.addition_attention:
self.init_attn = TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
causal_attention=False, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(ch, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False,
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.downsample_output.append(
nn.Sequential(
nn.GroupNorm(32, ch),
nn.SiLU(),
zero_module(conv_nd(dims, ch, ch, 3, padding=1))
)
)
if level < len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True
)
if resblock_updown
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
)
self.downsample_output.append(
nn.Sequential(
nn.GroupNorm(32, out_ch),
nn.SiLU(),
zero_module(conv_nd(dims, out_ch, out_ch, 3, padding=1))
)
)
ch = out_ch
ds *= 2
def forward(
self,
noisy_latents,
timesteps,
context_text,
context_img=None,
fps=None,
condition=None, # [b, t, c, h, w]
):
if self.ignore_noisy_latents:
noisy_latents = torch.zeros_like(noisy_latents)
b, _, t, height, width = noisy_latents.shape
t_emb = self.time_proj(timesteps).type(noisy_latents.dtype)
emb = self.time_embed(t_emb)
## repeat t times for context [(b t) 77 768] & time embedding
## check if we use per-frame image conditioning
if context_img is not None: ## decompose context into text and image
context_text = context_text.repeat_interleave(repeats=t, dim=0)
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = context_text.repeat_interleave(repeats=t, dim=0)
emb = emb.repeat_interleave(repeats=t, dim=0)
## always in shape (b n t) c h w, except for temporal layer
noisy_latents = rearrange(noisy_latents, 'b c t h w -> (b t) c h w')
condition = rearrange(condition, 'b t c h w -> (b t) c h w')
## combine emb
if self.fps_condition:
if fps is None:
fps = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=noisy_latents.device)
fps_emb = self.time_proj(fps).type(noisy_latents.dtype)
fps_embed = self.fps_embedding(fps_emb)
fps_embed = fps_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + fps_embed
h = noisy_latents.type(self.dtype)
hs = []
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context=context, batch_size=b)
if id == 0:
h = h + self.cond_embedding(condition)
if self.addition_attention:
h = self.init_attn(h, emb, context=context, batch_size=b)
hs.append(h)
guidance_feature_list = []
for hidden, module in zip(hs, self.downsample_output):
h = module(hidden)
guidance_feature_list.append(h)
return guidance_feature_list
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, layer_encoder_additional_kwargs={}, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# load config
config, unused_kwargs, commit_hash = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
return_commit_hash=True,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
**kwargs,
)
for key, value in layer_encoder_additional_kwargs.items():
if isinstance(value, (ListConfig, DictConfig)):
config[key] = OmegaConf.to_container(value, resolve=True)
else:
config[key] = value
# load model
model_file = None
if use_safetensors:
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
except IOError as e:
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
if not allow_pickle:
raise
logger.warning(
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
)
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file, variant)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"Controlnet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.")
return model