File size: 5,743 Bytes
55e1701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from abc import ABC

from megatron.core.transformer.transformer_config import TransformerConfig
from torch.nn.modules.module import _addindent
from termcolor import colored


def prehook_save_input_shape(func):
    def wrapper(self, *input_shapes, **kw_input_shapes):
        if len(input_shapes) + len(kw_input_shapes) == 0:
            if "_input_shape" in self.__dict__:
                return func(self, *self._input_shape, **self._kw_input_shapes)
            else:
                return 0
        self._input_shape = input_shapes
        self._kw_input_shapes = kw_input_shapes
        return func(self, *self._input_shape, **self._kw_input_shapes)

    return wrapper


class MetaBase(type):
    def __new__(cls, name, bases, attrs):
        if "num_activation" in attrs:
            attrs["num_activation"] = prehook_save_input_shape(attrs["num_activation"])

        return super().__new__(cls, name, bases, attrs)


class MemEstimator(metaclass=MetaBase):
    def __init__(self, *args, **kwargs):
        self._modules = {}
        pass

    def __repr__(self):
        # We treat the extra repr like the sub-module, one item per line
        extra_lines = []
        # extra_repr = self.extra_repr()
        # # empty string will be split into list ['']
        # if extra_repr:
        #     extra_lines = extra_repr.split("\n")
        child_lines = []
        for key, module in self._modules.items():
            mod_str = repr(module)
            mod_str = _addindent(mod_str, 2)
            child_lines.append("(" + key + "): " + mod_str)
        lines = extra_lines + child_lines

        stat = (
            "\t/* n_params="
            + colored(f"{self.num_parameter()/1024/1024:.2f}M", "red")
            + "\tn_act="
            + colored(f"{self.num_activation()/1024/1024:.2f}M", "green")
            + " */"
        )
        main_str = self._get_name() + stat + " ("
        if lines:
            # simple one-liner info, which most builtin Modules will use
            if len(extra_lines) == 1 and not child_lines:
                main_str += extra_lines[0]
            else:
                main_str += "\n  " + "\n  ".join(lines) + "\n"

        main_str += ")"
        return main_str
        return f"{self.__class__.__name__} n_param={self.num_parameter()}"

    def dump(self):
        ret = {}
        ret['name'] = self._get_name()
        ret['n_params'] = self.num_parameter()
        ret['n_act'] = self.num_activation()
        modules = {}
        for key, module in self._modules.items():
            modules[key] = module.dump()
        if len(modules)>0:
            ret['modules'] = modules
        return ret
        

    def _get_name(self):
        return self.__class__.__name__

    def num_parameter(self):
        """
        Calculate number of the model parameters
        """
        raise NotImplemented

    def num_activation(self, input_shape: list[int]):
        """
        Calculate number of the activation with given input_shape.
        Args:
            input shape
        """
        raise NotImplemented

    def mock_forward(self, input_shape: list[int]):
        """
        Mock the forward.
        Args:
            input shape
        return:
            output shape
        """
        raise NotImplemented

    def __setattr__(self, name: str, value) -> None:
        if isinstance(value, MemEstimator):
            modules = self.__dict__.get("_modules")
            modules[name] = value
        else:
            pass
        return super().__setattr__(name, value)

    def __delattr__(self, name):
        modules = self.__dict__.get("_modules")
        if name in modules:
            del modules[name]
        return super().__delattr__(name)


_global_config: TransformerConfig = None


def set_global_config(cfg):
    global _global_config
    _global_config = cfg


def get_tensor_model_parallel_world_size():
    global _global_config
    return _global_config.tensor_model_parallel_size


def get_tensor_model_parallel_rank():
    return 0


def get_expert_tensor_parallel_world_size():
    global _global_config
    return _global_config.expert_tensor_parallel_size


def get_expert_tensor_parallel_rank():
    return 0


_pp_rank = 0


def set_pipeline_model_parallel_rank(rank):
    global _pp_rank
    _pp_rank = rank


def get_pipeline_model_parallel_rank():
    global _pp_rank
    return _pp_rank


def get_virtual_pipeline_model_parallel_rank():
    return 0


def get_pipeline_model_parallel_world_size():
    global _global_config
    return _global_config.pipeline_model_parallel_size


def get_expert_model_parallel_rank():
    return 0


def get_expert_model_parallel_world_size():
    global _global_config
    return _global_config.expert_model_parallel_size


def get_virtual_pipeline_model_parallel_world_size():
    global _global_config
    return _global_config.virtual_pipeline_model_parallel_size


def is_pipeline_first_stage(ignore_virtual=False):
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        if (
            get_virtual_pipeline_model_parallel_world_size() is not None
            and get_virtual_pipeline_model_parallel_rank() != 0
        ):
            return False
    return get_pipeline_model_parallel_rank() == 0


def is_pipeline_last_stage(ignore_virtual=False):
    """Return True if in the last pipeline-model-parallel stage, False otherwise."""
    return get_pipeline_model_parallel_rank() == (
        get_pipeline_model_parallel_world_size() - 1
    )


def cum_mul(l: list):
    try:
        ret = 1
        for one in l:
            ret *= one
        return ret
    except:
        return 0
        __import__('ipdb').set_trace()