File size: 9,072 Bytes
6caaf18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import joblib
import pandas as pd
from scipy.stats import yeojohnson
import inv_transform



# Title of the app
st.title("Event Budget Estimate")

# Add custom CSS for spacing between columns
st.markdown(
    """

    <style>

    .stColumn > div {

        padding: 10px; /* Adjust the value as needed to increase spacing */

    }

    h2 {

        font-size: 20px;

    }

    </style>

    """, unsafe_allow_html=True)

# Create columns with adjusted spacing
col1, col2 = st.columns([1, 1], gap="large")  # Adjust gap as needed

with col1:
    # Smaller column title
    #st.subheader("Event Data")
    st.markdown("### Event Data")
    
    countries = pd.read_csv('ISO-3166-Countries-with-Regional-Codes.csv')
    countries_a2 = list (countries['alpha-2'])
    countries_names = list (countries['name'])
    countries = [f"{a2} - {name}" for a2, name in zip(countries_a2, countries_names)]
        
    us_index = countries_a2.index('US')
    #cn_index = countries_a2.index('CN')
    in_index = countries_a2.index('IN')
    
    states = pd.read_csv('USA States.csv', index_col=0)
    states = list(states.Abbreviation)
    ca_index = states.index('CA')
    
    # Input fields
    atnd_num = st.number_input("Estimate Number of Attendees", min_value=0, value=180)
    ppr_num = st.number_input("Estimate Paper Number", min_value=0, value=100)
    exh_num = st.number_input("Estimate Number of Exhibits", min_value=0, value=0)
    long = st.number_input("Conference Duration, Days", min_value=0, value=3)
    
    # Dropdown menus
    event_type = st.selectbox("Event Type", ['Colloquium', 'Conference', 'Forum', 'Seminar', 'Symposium', 'Workshop' , 'Other'], index = 1)
    cntry = st.selectbox("Conference Location Country", countries, index = us_index)
    chosen_country_index = countries.index(cntry) 
    if chosen_country_index == us_index:
        loc_state = st.selectbox("Conference Location: State Code", states, index=ca_index)
    else:
        loc_state = "Other"

    # Checkboxes
    st.markdown("<h4>Keywords</h4>", unsafe_allow_html=True)
    kw_comp = st.checkbox("Computer(s) / Computing / Computation / Computational")
    kw_sys = st.checkbox("System(s)")
    kw_app = st.checkbox("Application(s)")
    #kw_ntwk = st.checkbox("Network(s) /Networking")
    kw_wless = st.checkbox("Wireless")
    #kw_mdl = st.checkbox("Model / Modeling")
    #kw_arch = st.checkbox("Architecture(s)")
    kw_img = st.checkbox("Image / Imaging")
#    kw_adv = st.checkbox("Advanced")
#    kw_dist = st.checkbox("Distributed")
    
    st.write("**Please only use the exact keywords listed and avoid including any variations or additional words!**")
submit = st.button("Submit")

# If the submit button is clicked, show output in the second column (col2)
with col2:
    if submit:
        if chosen_country_index != us_index and loc_state != "Other":
            st.error("Correct Event Location: Country and State!")
        else:
            
            try:
                p = True
                regressor = joblib.load("budget_prediction_model.joblib")
            except:
                p = False
              
            if not p:
                st.write('Check the model path')
                st.error("Model doesn't Exist!")
            else:
               
                atnd_num = atnd_num / 1.22
                ppr_num = ppr_num / 1.26
                
                
                data = pd.DataFrame([{
                                        'act_atnd_tot_atnd_num': atnd_num,
                                        'long_atnd_ratio':long/atnd_num, 
                                        'act_paprs_num': ppr_num, 
                                        'longevity': long,
                                        'papr_atnd_ratio':ppr_num/atnd_num, 
                                        'exh_num': exh_num,
                                        'conf_loc_cntry_nm_India': int(chosen_country_index == in_index),
                                        'conf_loc_cntry_nm_USA': int(chosen_country_index == us_index),
                                        'comput': int(kw_comp),
                                        'conf_loc_state_nm_CA': int(loc_state == "CA"),
                                        'system': int(kw_sys),
                                        'conf_evnt_typ_nm_Conference': int(event_type == "Conference"),
                                        'applic': int(kw_app),
                                        'conf_evnt_typ_nm_Workshop': int(event_type == "Workshop"),
                                        'imag': int(kw_img),
                                        'wireless': int(kw_wless), 
                                    
                }])
            
                
                
                lambdas = pd.read_csv('lambdas_yeojohnson.csv', header=None, index_col=0)
                lambdas = lambdas.to_dict()[1]
                
                for n in ['act_atnd_tot_atnd_num', 'exh_num', 'act_paprs_num']:
                    data[n] = yeojohnson(data[n], lambdas[n])
                data.longevity -= 1
        
                # Predict income
                income = regressor.predict(data)[0]
                
                if exh_num > 0:
                    reg_fees_inc = 0.995 * income
                else:
                    reg_fees_inc = income
                 
                income = inv_transform.inv_yeojohnson(income, lambdas['fin_inc_tot_amt'])
                reg_fees_inc = inv_transform.inv_yeojohnson(reg_fees_inc, lambdas['fin_inc_tot_amt'])
                print(reg_fees_inc)
                income = round(income / 1000) * 1000
                reg_fees_inc = round(reg_fees_inc / 1000) * 1000
                
                exh_inc = 0
                sponsor_inc = 0
                
                if exh_num < 10:
                    exh_inc = min(exh_num * 1000, income - reg_fees_inc)     
                elif exh_num < 30:
                    exh_inc = min(10*1000 + (exh_num-10) * 1500, income - reg_fees_inc)
                elif exh_num < 50:
                    exh_inc = min(10*1000 + 20 * 1500 + (exh_num-30) * 3500, income - reg_fees_inc)
                else:
                    exh_inc = min(10*1000 + 20 * 1500 + 20 * 3500  + (exh_num-50) * 2900, income - reg_fees_inc)
                    
                    
                # repeat piecewise function for grants and donations
                if exh_num < 50:
                    sponsor_inc = min(exh_num * 3900, income - reg_fees_inc - exh_inc)
                else:
                    sponsor_inc = min(50 * 3900, income - reg_fees_inc - exh_inc)
                
                sponsor_inc = round(sponsor_inc / 1000) * 1000
                exh_inc = round(exh_inc / 1000) * 1000
                other_inc = income - reg_fees_inc - exh_inc - sponsor_inc
                reg_fees_inc = reg_fees_inc + other_inc
                
                
                expenses =  round(income * 0.85 / 1000) * 1000
                socl_funcs_exp = round(expenses * 0.54 / 1000) * 1000
                local_arr_exp = round(expenses * 0.30 / 1000) * 1000
                admintn_exp = round(expenses * 0.07 / 1000) * 1000
                promo_exp =round(expenses * 0.04 / 1000) * 1000
                audit_exp = min(expenses*0.006, 6000)
                audit_exp = round(audit_exp / 1000) * 1000
                other_exp = expenses - socl_funcs_exp - local_arr_exp - admintn_exp - promo_exp - audit_exp

                # Display results
                st.markdown("### Predicted Budget*")
                st.markdown("<h4>Income Structure</h4>", unsafe_allow_html=True)
                st.write(f"**Total Income: ${income}**")
                st.write(f"Registration Fees Income: ${reg_fees_inc}")
                st.write(f"Exhibit Income: ${exh_inc}")
                st.write(f"Sponsorship Income: ${sponsor_inc}")
                #st.write(f"Other Income: ${other_inc}")
                st.markdown("<h4>Expenses Structure</h4>", unsafe_allow_html=True)
                st.write(f"**Total Expenses: ${round(round(expenses, -3))}**")
                st.write(f"Social Functions Expenses: ${round(round(socl_funcs_exp, -3))}")
                st.write(f"Local Arrangement Expenses: ${round(round(local_arr_exp, -3))}")
                st.write(f"Administration Expenses: ${round(round(admintn_exp, -3))}")
                st.write(f"Promotion Expenses Amount: ${round(round(promo_exp, -3))}")
                st.write(f"Audit Fees Expenses: ${audit_exp}")
                st.write(f"Other Expenses: ${round(round(other_exp, -3))}")
                st.write("")
                st.write("***The numbers are approximate and should be adjusted according to event needs**")
                
                # Add button save those numbers to Excel