Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,69 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
import torch
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
if
|
10 |
-
|
11 |
-
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
|
46 |
-
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
max-width: 520px;
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(
|
62 |
-
#
|
63 |
-
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
67 |
|
68 |
-
|
69 |
-
label="
|
70 |
-
|
71 |
-
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
|
135 |
-
gr.
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
run_button.click(
|
141 |
-
fn
|
142 |
-
inputs
|
143 |
-
outputs
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
import shutil
|
|
|
5 |
|
6 |
+
# Function to install Rust and Cargo, clone and build avif-decode
|
7 |
+
def setup_avif_decode():
|
8 |
+
# Install Rust and Cargo
|
9 |
+
if not os.path.exists(os.path.expanduser("~/.cargo/bin/cargo")):
|
10 |
+
subprocess.run("curl https://sh.rustup.rs -sSf | sh -s -- -y", shell=True, check=True)
|
11 |
+
os.environ['PATH'] += os.pathsep + os.path.expanduser("~/.cargo/bin")
|
12 |
|
13 |
+
# Clone avif-decode if it doesn't exist
|
14 |
+
if not os.path.exists("avif-decode"):
|
15 |
+
subprocess.run("git clone https://github.com/kornelski/avif-decode.git", shell=True, check=True)
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Build avif-decode
|
18 |
+
subprocess.run("cd avif-decode && cargo build --release", shell=True, check=True)
|
19 |
|
20 |
+
# Call setup function to ensure everything is installed and built
|
21 |
+
setup_avif_decode()
|
22 |
|
23 |
+
# Define the function to convert AVIF to PNG
|
24 |
+
def convert_avif_to_png(avif_file):
|
25 |
+
avif_path = avif_file.name
|
26 |
+
png_path = avif_path.rsplit('.', 1)[0] + '.png'
|
27 |
|
28 |
+
# Run the avif-decode command
|
29 |
+
result = subprocess.run(["avif-decode/target/release/avif_decode", "-f", avif_path, png_path], capture_output=True, text=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
if result.returncode == 0:
|
32 |
+
return png_path
|
33 |
+
else:
|
34 |
+
return f"Error converting {avif_file.name}: {result.stderr}"
|
|
|
|
|
|
|
35 |
|
36 |
+
css = """
|
37 |
#col-container {
|
38 |
margin: 0 auto;
|
39 |
max-width: 520px;
|
40 |
}
|
41 |
"""
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
with gr.Blocks(css=css) as demo:
|
44 |
|
45 |
with gr.Column(elem_id="col-container"):
|
46 |
+
gr.Markdown("""
|
47 |
+
# AVIF to PNG Converter
|
48 |
+
Upload your AVIF files and get them converted to PNG.
|
49 |
""")
|
50 |
|
51 |
with gr.Row():
|
52 |
|
53 |
+
avif_file = gr.File(
|
54 |
+
label="Upload AVIF File",
|
55 |
+
file_types=[".avif"],
|
56 |
+
file_count="multiple"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
+
run_button = gr.Button("Convert", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
result = gr.Gallery(label="Result")
|
|
|
|
|
|
|
62 |
|
63 |
run_button.click(
|
64 |
+
fn=convert_avif_to_png,
|
65 |
+
inputs=[avif_file],
|
66 |
+
outputs=[result]
|
67 |
)
|
68 |
|
69 |
+
demo.queue().launch()
|