ID0M commited on
Commit
c1a5d3b
·
verified ·
1 Parent(s): ec8affd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -117
app.py CHANGED
@@ -1,146 +1,69 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
67
 
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
 
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
+ import subprocess
3
+ import os
4
+ import shutil
 
5
 
6
+ # Function to install Rust and Cargo, clone and build avif-decode
7
+ def setup_avif_decode():
8
+ # Install Rust and Cargo
9
+ if not os.path.exists(os.path.expanduser("~/.cargo/bin/cargo")):
10
+ subprocess.run("curl https://sh.rustup.rs -sSf | sh -s -- -y", shell=True, check=True)
11
+ os.environ['PATH'] += os.pathsep + os.path.expanduser("~/.cargo/bin")
12
 
13
+ # Clone avif-decode if it doesn't exist
14
+ if not os.path.exists("avif-decode"):
15
+ subprocess.run("git clone https://github.com/kornelski/avif-decode.git", shell=True, check=True)
 
 
 
 
 
16
 
17
+ # Build avif-decode
18
+ subprocess.run("cd avif-decode && cargo build --release", shell=True, check=True)
19
 
20
+ # Call setup function to ensure everything is installed and built
21
+ setup_avif_decode()
22
 
23
+ # Define the function to convert AVIF to PNG
24
+ def convert_avif_to_png(avif_file):
25
+ avif_path = avif_file.name
26
+ png_path = avif_path.rsplit('.', 1)[0] + '.png'
27
 
28
+ # Run the avif-decode command
29
+ result = subprocess.run(["avif-decode/target/release/avif_decode", "-f", avif_path, png_path], capture_output=True, text=True)
 
 
 
 
 
 
 
30
 
31
+ if result.returncode == 0:
32
+ return png_path
33
+ else:
34
+ return f"Error converting {avif_file.name}: {result.stderr}"
 
 
 
35
 
36
+ css = """
37
  #col-container {
38
  margin: 0 auto;
39
  max-width: 520px;
40
  }
41
  """
42
 
 
 
 
 
 
43
  with gr.Blocks(css=css) as demo:
44
 
45
  with gr.Column(elem_id="col-container"):
46
+ gr.Markdown("""
47
+ # AVIF to PNG Converter
48
+ Upload your AVIF files and get them converted to PNG.
49
  """)
50
 
51
  with gr.Row():
52
 
53
+ avif_file = gr.File(
54
+ label="Upload AVIF File",
55
+ file_types=[".avif"],
56
+ file_count="multiple"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  )
58
 
59
+ run_button = gr.Button("Convert", scale=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ result = gr.Gallery(label="Result")
 
 
 
62
 
63
  run_button.click(
64
+ fn=convert_avif_to_png,
65
+ inputs=[avif_file],
66
+ outputs=[result]
67
  )
68
 
69
+ demo.queue().launch()