Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,69 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
if
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
-
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
-
height = height,
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"An astronaut riding a green horse",
|
| 43 |
-
"A delicious ceviche cheesecake slice",
|
| 44 |
-
]
|
| 45 |
|
| 46 |
-
css="""
|
| 47 |
#col-container {
|
| 48 |
margin: 0 auto;
|
| 49 |
max-width: 520px;
|
| 50 |
}
|
| 51 |
"""
|
| 52 |
|
| 53 |
-
if torch.cuda.is_available():
|
| 54 |
-
power_device = "GPU"
|
| 55 |
-
else:
|
| 56 |
-
power_device = "CPU"
|
| 57 |
-
|
| 58 |
with gr.Blocks(css=css) as demo:
|
| 59 |
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
-
gr.Markdown(
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
""")
|
| 65 |
|
| 66 |
with gr.Row():
|
| 67 |
|
| 68 |
-
|
| 69 |
-
label="
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
run_button = gr.Button("Run", scale=0)
|
| 77 |
-
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
-
|
| 80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
-
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
seed = gr.Slider(
|
| 90 |
-
label="Seed",
|
| 91 |
-
minimum=0,
|
| 92 |
-
maximum=MAX_SEED,
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
with gr.Row():
|
| 118 |
-
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
num_inference_steps = gr.Slider(
|
| 128 |
-
label="Number of inference steps",
|
| 129 |
-
minimum=1,
|
| 130 |
-
maximum=12,
|
| 131 |
-
step=1,
|
| 132 |
-
value=2,
|
| 133 |
-
)
|
| 134 |
|
| 135 |
-
gr.
|
| 136 |
-
examples = examples,
|
| 137 |
-
inputs = [prompt]
|
| 138 |
-
)
|
| 139 |
|
| 140 |
run_button.click(
|
| 141 |
-
fn
|
| 142 |
-
inputs
|
| 143 |
-
outputs
|
| 144 |
)
|
| 145 |
|
| 146 |
-
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
|
|
|
| 5 |
|
| 6 |
+
# Function to install Rust and Cargo, clone and build avif-decode
|
| 7 |
+
def setup_avif_decode():
|
| 8 |
+
# Install Rust and Cargo
|
| 9 |
+
if not os.path.exists(os.path.expanduser("~/.cargo/bin/cargo")):
|
| 10 |
+
subprocess.run("curl https://sh.rustup.rs -sSf | sh -s -- -y", shell=True, check=True)
|
| 11 |
+
os.environ['PATH'] += os.pathsep + os.path.expanduser("~/.cargo/bin")
|
| 12 |
|
| 13 |
+
# Clone avif-decode if it doesn't exist
|
| 14 |
+
if not os.path.exists("avif-decode"):
|
| 15 |
+
subprocess.run("git clone https://github.com/kornelski/avif-decode.git", shell=True, check=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Build avif-decode
|
| 18 |
+
subprocess.run("cd avif-decode && cargo build --release", shell=True, check=True)
|
| 19 |
|
| 20 |
+
# Call setup function to ensure everything is installed and built
|
| 21 |
+
setup_avif_decode()
|
| 22 |
|
| 23 |
+
# Define the function to convert AVIF to PNG
|
| 24 |
+
def convert_avif_to_png(avif_file):
|
| 25 |
+
avif_path = avif_file.name
|
| 26 |
+
png_path = avif_path.rsplit('.', 1)[0] + '.png'
|
| 27 |
|
| 28 |
+
# Run the avif-decode command
|
| 29 |
+
result = subprocess.run(["avif-decode/target/release/avif_decode", "-f", avif_path, png_path], capture_output=True, text=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
if result.returncode == 0:
|
| 32 |
+
return png_path
|
| 33 |
+
else:
|
| 34 |
+
return f"Error converting {avif_file.name}: {result.stderr}"
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
css = """
|
| 37 |
#col-container {
|
| 38 |
margin: 0 auto;
|
| 39 |
max-width: 520px;
|
| 40 |
}
|
| 41 |
"""
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
with gr.Blocks(css=css) as demo:
|
| 44 |
|
| 45 |
with gr.Column(elem_id="col-container"):
|
| 46 |
+
gr.Markdown("""
|
| 47 |
+
# AVIF to PNG Converter
|
| 48 |
+
Upload your AVIF files and get them converted to PNG.
|
| 49 |
""")
|
| 50 |
|
| 51 |
with gr.Row():
|
| 52 |
|
| 53 |
+
avif_file = gr.File(
|
| 54 |
+
label="Upload AVIF File",
|
| 55 |
+
file_types=[".avif"],
|
| 56 |
+
file_count="multiple"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
+
run_button = gr.Button("Convert", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
result = gr.Gallery(label="Result")
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
run_button.click(
|
| 64 |
+
fn=convert_avif_to_png,
|
| 65 |
+
inputs=[avif_file],
|
| 66 |
+
outputs=[result]
|
| 67 |
)
|
| 68 |
|
| 69 |
+
demo.queue().launch()
|