Spaces:
Build error
Build error
File size: 4,660 Bytes
d7b89b7 d015e2a d7b89b7 3090213 d7b89b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import mathutils
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.cm as cmx
import os.path as osp
import h5py
import random
import torch
import torch.nn as nn
from GDANet_cls import GDANET
from DGCNN import DGCNN
with open('shape_names.txt') as f:
CLASS_NAME = f.read().splitlines()
model_gda = GDANET()
model_gda = nn.DataParallel(model_gda)
model_gda.load_state_dict(torch.load('./GDANet_WOLFMix.t7', map_location=torch.device('cpu')))
model_gda.eval()
model_dgcnn = DGCNN()
model_dgcnn = nn.DataParallel(model_dgcnn)
model_dgcnn.load_state_dict(torch.load('./dgcnn.t7', map_location=torch.device('cpu')))
model_dgcnn.eval()
def pyplot_draw_point_cloud(points, corruption):
rot1 = mathutils.Euler([-math.pi / 2, 0, 0]).to_matrix().to_3x3()
rot2 = mathutils.Euler([0, 0, math.pi]).to_matrix().to_3x3()
points = np.dot(points, rot1)
points = np.dot(points, rot2)
x, y, z = points[:, 0], points[:, 1], points[:, 2]
colorsMap = 'winter'
cs = y
cm = plt.get_cmap(colorsMap)
cNorm = matplotlib.colors.Normalize(vmin=-1, vmax=1)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, c=scalarMap.to_rgba(cs))
scalarMap.set_array(cs)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
plt.axis('off')
plt.title(corruption, fontsize=30)
plt.tight_layout()
plt.savefig('visualization.png', bbox_inches='tight', dpi=200)
plt.close()
def load_dataset(corruption_idx, severity):
corruptions = [
'clean',
'scale',
'jitter',
'rotate',
'dropout_global',
'dropout_local',
'add_global',
'add_local',
]
corruption_type = corruptions[corruption_idx]
if corruption_type == 'clean':
f = h5py.File(osp.join('modelnet_c', corruption_type + '.h5'))
else:
f = h5py.File(osp.join('modelnet_c', corruption_type + '_{}'.format(severity-1) + '.h5'))
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
return data, label
def recognize_pcd(model, pcd):
pcd = torch.tensor(pcd).unsqueeze(0)
pcd = pcd.permute(0, 2, 1)
output = model(pcd)
prediction = output.softmax(-1).flatten()
_, top5_idx = torch.topk(prediction, 5)
return {CLASS_NAME[i]: float(prediction[i]) for i in top5_idx.tolist()}
def run(seed, corruption_idx, severity):
data, label = load_dataset(corruption_idx, severity)
random.seed(seed)
sample_indx = random.randint(0, data.shape[0])
pcd, cls = data[sample_indx], label[sample_indx]
pyplot_draw_point_cloud(pcd, CLASS_NAME[cls[0]])
output = 'visualization.png'
return output, recognize_pcd(model_dgcnn, pcd), recognize_pcd(model_gda, pcd)
if __name__ == '__main__':
iface = gr.Interface(
fn=run,
inputs=[
gr.components.Number(label='Sample Seed', precision=0),
gr.components.Radio(
['Clean', 'Scale', 'Jitter', 'Rotate', 'Drop Global', 'Drop Local', 'Add Global', 'Add Local'],
value='Clean', type="index", label='Corruption Type'),
gr.components.Slider(1, 5, step=1, label='Corruption severity'),
],
outputs=[
gr.components.Image(type="file", label="Visualization"),
gr.components.Label(num_top_classes=5, label="Baseline (DGCNN) Prediction"),
gr.components.Label(num_top_classes=5, label="Ours (GDANet+WolfMix) Prediction")
],
live=False,
allow_flagging='never',
title="ModelNet-C",
description="""
Welcome to the demo of ModelNet-C! In this demo, you may:
- **Visualize** various types of corrupted point clouds in ModelNet-C,
- **Compare** our proposed techniques to the baseline in terms of prediction robustness.
For more details, checkout more our paper [Benchmarking and Analyzing Point Cloud Classification under Corruptions, ICML 2022](https://arxiv.org/abs/2202.03377)!
""",
examples=[
[0, 'Jitter', 5],
[999, 'Drop Local', 5],
],
# css=".output-image, .image-preview {height: 500px !important}",
article="<p style='text-align: center'><a href='https://github.com/jiawei-ren/ModelNet-C' target='_blank'>ModelNet-C @ GitHub</a></p> "
)
iface.launch()
|