Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gspread
|
|
| 3 |
import gradio as gr
|
| 4 |
from oauth2client.service_account import ServiceAccountCredentials
|
| 5 |
from datetime import datetime
|
|
|
|
| 6 |
|
| 7 |
# ------------------ AUTH ------------------
|
| 8 |
VALID_USERS = {
|
|
@@ -25,13 +26,22 @@ def load_tab(sheet_name):
|
|
| 25 |
except:
|
| 26 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# ------------------ FIELD SALES ------------------
|
| 29 |
def load_field_sales():
|
| 30 |
df = load_tab("Field Sales")
|
| 31 |
-
if df.empty:
|
| 32 |
-
return pd.DataFrame(
|
| 33 |
|
| 34 |
-
df['Date'] = pd.to_datetime(df
|
| 35 |
df = df.dropna(subset=["Date"])
|
| 36 |
df['DateStr'] = df['Date'].dt.date.astype(str)
|
| 37 |
|
|
@@ -40,101 +50,86 @@ def load_field_sales():
|
|
| 40 |
else:
|
| 41 |
df["Order Value"] = pd.to_numeric(df["Order Value"], errors="coerce").fillna(0)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
return df
|
| 44 |
|
|
|
|
| 45 |
def generate_summary(date_str):
|
| 46 |
df = load_field_sales()
|
| 47 |
if df.empty:
|
| 48 |
-
return pd.DataFrame([["No data"]], columns=["Message"])
|
| 49 |
|
|
|
|
| 50 |
all_reps = sorted(df['Rep'].dropna().unique())
|
| 51 |
-
date_str = date_str.strip()
|
| 52 |
-
day_df = df[df['DateStr'] == date_str]
|
| 53 |
-
total_visits = day_df.groupby("Rep").size().reset_index(name="Total Visits")
|
| 54 |
-
|
| 55 |
col = "Current/Prospect Customer"
|
| 56 |
-
if col not in df.columns:
|
| 57 |
-
df[col] = ""
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
breakdown = pd.DataFrame({
|
| 62 |
"Rep": all_reps,
|
| 63 |
"Current": [len(current[current["Rep"] == rep]) for rep in all_reps],
|
| 64 |
"Prospect": [len(prospect[prospect["Rep"] == rep]) for rep in all_reps]
|
| 65 |
})
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
return total_visits, breakdown, inactive_df
|
| 71 |
-
|
| 72 |
-
def get_order_summary(date_str):
|
| 73 |
-
df = load_field_sales()
|
| 74 |
-
if df.empty:
|
| 75 |
-
return pd.DataFrame([["No data"]], columns=["Message"])
|
| 76 |
-
|
| 77 |
-
date_str = date_str.strip()
|
| 78 |
-
day_df = df[df['DateStr'] == date_str]
|
| 79 |
-
if "Order Received" not in df.columns:
|
| 80 |
-
df["Order Received"] = ""
|
| 81 |
-
|
| 82 |
-
rep_group = day_df.groupby("Rep").agg({
|
| 83 |
"Order Received": lambda x: (x == "Yes").sum(),
|
| 84 |
-
"
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
"Order Received": "Orders Received",
|
| 87 |
-
"
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def get_escalations():
|
| 92 |
-
df = load_field_sales()
|
| 93 |
-
if df.empty:
|
| 94 |
-
return pd.DataFrame([["No data in Field Sales"]], columns=["Message"])
|
| 95 |
-
|
| 96 |
-
col = "Customer Type & Status"
|
| 97 |
-
if col in df.columns:
|
| 98 |
-
flagged = df[df[col].str.contains("Second", na=False)]
|
| 99 |
-
return flagged if not flagged.empty else pd.DataFrame([["No second-hand dealerships flagged."]], columns=["Message"])
|
| 100 |
-
else:
|
| 101 |
-
return pd.DataFrame([["β οΈ Column 'Customer Type & Status' not found."]], columns=["Message"])
|
| 102 |
-
|
| 103 |
-
# ------------------ TELESALeS ------------------
|
| 104 |
-
def get_telesales_summary():
|
| 105 |
-
df = load_tab("TeleSales")
|
| 106 |
-
if df.empty or "Rep Email" not in df.columns:
|
| 107 |
-
return pd.DataFrame([["No data available"]], columns=["Message"])
|
| 108 |
-
|
| 109 |
-
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 110 |
-
df["DateStr"] = df["Date"].dt.date.astype(str)
|
| 111 |
-
grouped = df.groupby(["Rep Email", "DateStr"]).size().reset_index(name="Calls Made")
|
| 112 |
-
return grouped.rename(columns={"Rep Email": "Rep"})
|
| 113 |
-
|
| 114 |
-
# ------------------ OEM VISITS ------------------
|
| 115 |
-
def get_oem_summary():
|
| 116 |
-
df = load_tab("OEM Visit")
|
| 117 |
-
if df.empty or "Rep" not in df.columns:
|
| 118 |
-
return pd.DataFrame([["No data available"]], columns=["Message"])
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
-
def get_listings():
|
| 131 |
-
df = load_tab("CustomerListings")
|
| 132 |
-
return df if not df.empty else pd.DataFrame([["No listings found."]], columns=["Message"])
|
| 133 |
-
|
| 134 |
-
# ------------------ USERS ------------------
|
| 135 |
-
def get_users():
|
| 136 |
-
df = load_tab("Users")
|
| 137 |
-
return df if not df.empty else pd.DataFrame([["No users configured."]], columns=["Message"])
|
| 138 |
|
| 139 |
# ------------------ GRADIO APP ------------------
|
| 140 |
with gr.Blocks() as app:
|
|
@@ -158,55 +153,12 @@ with gr.Blocks() as app:
|
|
| 158 |
visits = gr.Dataframe(label="β
Total Visits")
|
| 159 |
breakdown = gr.Dataframe(label="π·οΈ Current vs. Prospect")
|
| 160 |
inactive = gr.Dataframe(label="β οΈ Inactive Reps")
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
order_date.change(fn=get_order_summary, inputs=order_date, outputs=order_table)
|
| 168 |
-
|
| 169 |
-
# --- Escalations ---
|
| 170 |
-
with gr.Tab("π¨ Escalations"):
|
| 171 |
-
esc_table = gr.Dataframe(value=get_escalations, label="Second-hand Dealerships")
|
| 172 |
-
esc_btn = gr.Button("π Refresh")
|
| 173 |
-
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
| 174 |
-
|
| 175 |
-
# --- TeleSales ---
|
| 176 |
-
with gr.Tab("π TeleSales"):
|
| 177 |
-
ts_table = gr.Dataframe(value=get_telesales_summary, label="TeleSales Summary")
|
| 178 |
-
ts_refresh = gr.Button("π Refresh TeleSales")
|
| 179 |
-
ts_refresh.click(fn=get_telesales_summary, outputs=ts_table)
|
| 180 |
-
|
| 181 |
-
# --- OEM Visits ---
|
| 182 |
-
with gr.Tab("π OEM Visits"):
|
| 183 |
-
oem_table = gr.Dataframe(value=get_oem_summary, label="OEM Visit Summary")
|
| 184 |
-
oem_refresh = gr.Button("π Refresh OEM")
|
| 185 |
-
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
| 186 |
-
|
| 187 |
-
# --- Requests ---
|
| 188 |
-
with gr.Tab("π¬ Customer Requests"):
|
| 189 |
-
req_table = gr.Dataframe(value=get_requests, label="Customer Requests", interactive=False)
|
| 190 |
-
req_refresh = gr.Button("π Refresh Requests")
|
| 191 |
-
req_refresh.click(fn=get_requests, outputs=req_table)
|
| 192 |
-
|
| 193 |
-
# --- Dealerships ---
|
| 194 |
-
with gr.Tab("π Dealership Directory"):
|
| 195 |
-
listings_table = gr.Dataframe(value=get_listings, label="Customer Listings")
|
| 196 |
-
listings_refresh = gr.Button("π Refresh Listings")
|
| 197 |
-
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
| 198 |
-
|
| 199 |
-
# --- Users ---
|
| 200 |
-
with gr.Tab("π€ Users"):
|
| 201 |
-
users_table = gr.Dataframe(value=get_users, label="Users")
|
| 202 |
-
users_refresh = gr.Button("π Refresh Users")
|
| 203 |
-
users_refresh.click(fn=get_users, outputs=users_table)
|
| 204 |
-
|
| 205 |
-
# --- Field Sales Raw Data ---
|
| 206 |
-
with gr.Tab("π§Ύ Field Sales Raw Data"):
|
| 207 |
-
field_df = gr.Dataframe(value=load_field_sales, label="Full Field Sales Data", interactive=False)
|
| 208 |
-
field_btn = gr.Button("π Refresh Field Sales")
|
| 209 |
-
field_btn.click(fn=load_field_sales, outputs=field_df)
|
| 210 |
|
| 211 |
def do_login(user, pw):
|
| 212 |
if VALID_USERS.get(user) == pw:
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from oauth2client.service_account import ServiceAccountCredentials
|
| 5 |
from datetime import datetime
|
| 6 |
+
from math import radians, cos, sin, asin, sqrt
|
| 7 |
|
| 8 |
# ------------------ AUTH ------------------
|
| 9 |
VALID_USERS = {
|
|
|
|
| 26 |
except:
|
| 27 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
| 28 |
|
| 29 |
+
def haversine(coord1, coord2):
|
| 30 |
+
lon1, lat1 = map(radians, map(float, coord1.split(',')[::-1]))
|
| 31 |
+
lon2, lat2 = map(radians, map(float, coord2.split(',')[::-1]))
|
| 32 |
+
dlon = lon2 - lon1
|
| 33 |
+
dlat = lat2 - lat1
|
| 34 |
+
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
| 35 |
+
c = 2 * asin(sqrt(a))
|
| 36 |
+
return 6371 * c
|
| 37 |
+
|
| 38 |
# ------------------ FIELD SALES ------------------
|
| 39 |
def load_field_sales():
|
| 40 |
df = load_tab("Field Sales")
|
| 41 |
+
if df.empty or "Date" not in df.columns:
|
| 42 |
+
return pd.DataFrame()
|
| 43 |
|
| 44 |
+
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
|
| 45 |
df = df.dropna(subset=["Date"])
|
| 46 |
df['DateStr'] = df['Date'].dt.date.astype(str)
|
| 47 |
|
|
|
|
| 50 |
else:
|
| 51 |
df["Order Value"] = pd.to_numeric(df["Order Value"], errors="coerce").fillna(0)
|
| 52 |
|
| 53 |
+
# Distance calc
|
| 54 |
+
distances = [0]
|
| 55 |
+
for i in range(1, len(df)):
|
| 56 |
+
try:
|
| 57 |
+
prev = df.loc[i-1, 'Location']
|
| 58 |
+
curr = df.loc[i, 'Location']
|
| 59 |
+
if pd.notna(prev) and pd.notna(curr):
|
| 60 |
+
distances.append(round(haversine(prev, curr), 2))
|
| 61 |
+
else:
|
| 62 |
+
distances.append(0)
|
| 63 |
+
except:
|
| 64 |
+
distances.append(0)
|
| 65 |
+
df["Distance Travelled (km)"] = distances
|
| 66 |
+
|
| 67 |
+
return df
|
| 68 |
+
|
| 69 |
+
# ------------------ TELESALES ------------------
|
| 70 |
+
def load_telesales():
|
| 71 |
+
df = load_tab("TeleSales")
|
| 72 |
+
if df.empty or "Rep Email" not in df.columns:
|
| 73 |
+
return pd.DataFrame()
|
| 74 |
+
|
| 75 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 76 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
| 77 |
+
return df
|
| 78 |
+
|
| 79 |
+
# ------------------ OEM ------------------
|
| 80 |
+
def load_oem():
|
| 81 |
+
df = load_tab("OEM Visit")
|
| 82 |
+
if df.empty or "Rep" not in df.columns:
|
| 83 |
+
return pd.DataFrame()
|
| 84 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 85 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
| 86 |
return df
|
| 87 |
|
| 88 |
+
# ------------------ SUMMARY ------------------
|
| 89 |
def generate_summary(date_str):
|
| 90 |
df = load_field_sales()
|
| 91 |
if df.empty:
|
| 92 |
+
return pd.DataFrame([["No Field Sales data"]], columns=["Message"])*5
|
| 93 |
|
| 94 |
+
df_day = df[df['DateStr'] == date_str.strip()]
|
| 95 |
all_reps = sorted(df['Rep'].dropna().unique())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
col = "Current/Prospect Customer"
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# --- Visits Breakdown
|
| 99 |
+
total_visits = df_day.groupby("Rep").size().reset_index(name="Total Visits")
|
| 100 |
+
current = df_day[df_day[col] == "Current"]
|
| 101 |
+
prospect = df_day[df_day[col] == "Prospect"]
|
| 102 |
breakdown = pd.DataFrame({
|
| 103 |
"Rep": all_reps,
|
| 104 |
"Current": [len(current[current["Rep"] == rep]) for rep in all_reps],
|
| 105 |
"Prospect": [len(prospect[prospect["Rep"] == rep]) for rep in all_reps]
|
| 106 |
})
|
| 107 |
+
inactive = pd.DataFrame({'Inactive Reps': [rep for rep in all_reps if rep not in total_visits["Rep"].tolist()]})
|
| 108 |
|
| 109 |
+
# --- Field Summary per Rep
|
| 110 |
+
rep_summary = df_day.groupby("Rep").agg({
|
| 111 |
+
"Order Value": "sum",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
"Order Received": lambda x: (x == "Yes").sum(),
|
| 113 |
+
"Current/Prospect Customer": lambda x: (x == "Current").sum(),
|
| 114 |
+
"Distance Travelled (km)": "sum"
|
| 115 |
+
}).rename(columns={
|
| 116 |
+
"Order Value": "Total Order Value",
|
| 117 |
"Order Received": "Orders Received",
|
| 118 |
+
"Current/Prospect Customer": "Current Customers",
|
| 119 |
+
"Distance Travelled (km)": "Total Distance (km)"
|
| 120 |
+
}).reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
# --- TeleSales Summary
|
| 123 |
+
df_ts = load_telesales()
|
| 124 |
+
df_ts_day = df_ts[df_ts['DateStr'] == date_str.strip()]
|
| 125 |
+
ts_summary = df_ts_day.groupby("Rep Email").size().reset_index(name="Total Calls Made") if not df_ts_day.empty else pd.DataFrame([["No Telesales"]], columns=["Info"])
|
| 126 |
|
| 127 |
+
# --- OEM Summary
|
| 128 |
+
df_oem = load_oem()
|
| 129 |
+
df_oem_day = df_oem[df_oem['DateStr'] == date_str.strip()]
|
| 130 |
+
oem_summary = df_oem_day.groupby("Rep").size().reset_index(name="Total OEM Visits") if not df_oem_day.empty else pd.DataFrame([["No OEM Visits"]], columns=["Info"])
|
| 131 |
|
| 132 |
+
return total_visits, breakdown, inactive, rep_summary, ts_summary, oem_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# ------------------ GRADIO APP ------------------
|
| 135 |
with gr.Blocks() as app:
|
|
|
|
| 153 |
visits = gr.Dataframe(label="β
Total Visits")
|
| 154 |
breakdown = gr.Dataframe(label="π·οΈ Current vs. Prospect")
|
| 155 |
inactive = gr.Dataframe(label="β οΈ Inactive Reps")
|
| 156 |
+
field_summary = gr.Dataframe(label="π Field Sales Summary")
|
| 157 |
+
ts_summary = gr.Dataframe(label="π Telesales Summary")
|
| 158 |
+
oem_summary = gr.Dataframe(label="π OEM Visit Summary")
|
| 159 |
+
|
| 160 |
+
date_summary.change(fn=generate_summary, inputs=date_summary,
|
| 161 |
+
outputs=[visits, breakdown, inactive, field_summary, ts_summary, oem_summary])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def do_login(user, pw):
|
| 164 |
if VALID_USERS.get(user) == pw:
|