IAMTFRMZA commited on
Commit
bf7ece0
·
verified ·
1 Parent(s): 4e8119f
Files changed (1) hide show
  1. app.py +70 -55
app.py CHANGED
@@ -1,64 +1,79 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ from transformers import pipeline
4
+ from bs4 import BeautifulSoup
5
+ import requests
6
+ from PyPDF2 import PdfReader
7
+ import docx
8
+ from pptx import Presentation
9
+ import openpyxl
10
 
11
+ # Load the model
12
+ model = pipeline("question-answering", model="facebook/llama-7b-hf")
 
 
13
 
14
+ # Function to read text from uploaded documents
15
+ def read_text_from_document(file):
16
+ if file.name.endswith('.txt'):
17
+ text = file.read().decode('utf-8')
18
+ elif file.name.endswith('.pdf'):
19
+ reader = PdfReader(file)
20
+ text = ''
21
+ for page in reader.pages:
22
+ text += page.extract_text()
23
+ elif file.name.endswith('.docx'):
24
+ doc = docx.Document(file)
25
+ text = ''
26
+ for para in doc.paragraphs:
27
+ text += para.text
28
+ elif file.name.endswith('.pptx'):
29
+ presentation = Presentation(file)
30
+ text = ''
31
+ for slide in presentation.slides:
32
+ for shape in slide.shapes:
33
+ if hasattr(shape, "text"):
34
+ text += shape.text
35
+ elif file.name.endswith('.xlsx'):
36
+ wb = openpyxl.load_workbook(file)
37
+ sheet = wb.active
38
+ text = ''
39
+ for row in sheet.rows:
40
+ for cell in row:
41
+ text += str(cell.value) + ' '
42
+ return text
43
 
44
+ # Function to scrape URL
45
+ def scrape_url(url):
46
+ try:
47
+ response = requests.get(url)
48
+ soup = BeautifulSoup(response.text, 'html.parser')
49
+ text = soup.get_text()
50
+ return text
51
+ except Exception as e:
52
+ return str(e)
53
 
54
+ # Function to answer questions based on input data
55
+ def answer_questions(data, question):
56
+ if data:
57
+ try:
58
+ result = model(question=question, context=data)
59
+ return result['answer']
60
+ except Exception as e:
61
+ return str(e)
62
+ else:
63
+ return "No data provided"
64
 
65
+ # Gradio interface
66
+ demo = gr.Interface(
67
+ fn=lambda data, url, question: answer_questions(read_text_from_document(data) if data else scrape_url(url), question),
68
+ inputs=[
69
+ gr.File(label="Upload Document (.txt, .pdf, .docx, .pptx, .xlsx)"),
70
+ gr.Textbox(label="Enter URL"),
71
+ gr.Textbox(label="Ask a question")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ],
73
+ outputs=gr.Textbox(label="Answer"),
74
+ title="LLM Chatbot",
75
+ description="Upload a document or enter a URL and ask a question"
76
  )
77
 
78
+ # Launch the demo
79
+ demo.launch()