Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ df = pd.DataFrame(data)
|
|
| 17 |
|
| 18 |
# === Parse and clean ===
|
| 19 |
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
|
| 20 |
-
df['Date'] = df['Timestamp'].dt.date.astype(str)
|
| 21 |
df['Time'] = df['Timestamp'].dt.time
|
| 22 |
|
| 23 |
location_split = df['Location'].str.split(',', expand=True)
|
|
@@ -28,6 +28,14 @@ df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
|
|
| 28 |
df = df.sort_values(by=['Rep Name', 'Timestamp'])
|
| 29 |
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# === Functions ===
|
| 32 |
def get_reps(date_str):
|
| 33 |
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
|
|
@@ -41,11 +49,10 @@ def show_map(date_str, rep):
|
|
| 41 |
subset = subset.sort_values(by='Timestamp').copy()
|
| 42 |
subset['Visit Order'] = range(1, len(subset) + 1)
|
| 43 |
|
| 44 |
-
# Center and
|
| 45 |
center_lat = subset['Latitude'].mean()
|
| 46 |
center_lon = subset['Longitude'].mean()
|
| 47 |
|
| 48 |
-
# Line + colored scatter
|
| 49 |
fig = px.line_mapbox(
|
| 50 |
subset,
|
| 51 |
lat="Latitude", lon="Longitude",
|
|
@@ -56,7 +63,6 @@ def show_map(date_str, rep):
|
|
| 56 |
center={"lat": center_lat, "lon": center_lon}
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# Colored points by visit order
|
| 60 |
scatter = px.scatter_mapbox(
|
| 61 |
subset,
|
| 62 |
lat="Latitude", lon="Longitude",
|
|
@@ -65,11 +71,9 @@ def show_map(date_str, rep):
|
|
| 65 |
hover_data=["Time", "Time Diff (min)"],
|
| 66 |
color_continuous_scale="Bluered"
|
| 67 |
)
|
| 68 |
-
|
| 69 |
for trace in scatter.data:
|
| 70 |
fig.add_trace(trace)
|
| 71 |
|
| 72 |
-
# Start/End markers
|
| 73 |
fig.add_trace(px.scatter_mapbox(
|
| 74 |
pd.DataFrame([subset.iloc[0]]),
|
| 75 |
lat="Latitude", lon="Longitude",
|
|
@@ -80,7 +84,34 @@ def show_map(date_str, rep):
|
|
| 80 |
text=["End"], color_discrete_sequence=["red"]).data[0])
|
| 81 |
|
| 82 |
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return table, fig
|
| 85 |
|
| 86 |
# === Gradio UI ===
|
|
|
|
| 17 |
|
| 18 |
# === Parse and clean ===
|
| 19 |
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
|
| 20 |
+
df['Date'] = df['Timestamp'].dt.date.astype(str)
|
| 21 |
df['Time'] = df['Timestamp'].dt.time
|
| 22 |
|
| 23 |
location_split = df['Location'].str.split(',', expand=True)
|
|
|
|
| 28 |
df = df.sort_values(by=['Rep Name', 'Timestamp'])
|
| 29 |
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
|
| 30 |
|
| 31 |
+
# Add Visit Order
|
| 32 |
+
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
|
| 33 |
+
|
| 34 |
+
# Construct image thumbnail URLs from Google Drive folder
|
| 35 |
+
drive_folder_url = "https://drive.google.com/uc?id="
|
| 36 |
+
df['Image ID'] = df['Image'].str.extract(r'Calls_Images/([^.]+)')
|
| 37 |
+
df['Image URL'] = df['Image ID'].apply(lambda x: f"{drive_folder_url}{x}" if pd.notna(x) else "")
|
| 38 |
+
|
| 39 |
# === Functions ===
|
| 40 |
def get_reps(date_str):
|
| 41 |
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
|
|
|
|
| 49 |
subset = subset.sort_values(by='Timestamp').copy()
|
| 50 |
subset['Visit Order'] = range(1, len(subset) + 1)
|
| 51 |
|
| 52 |
+
# Center and zoom
|
| 53 |
center_lat = subset['Latitude'].mean()
|
| 54 |
center_lon = subset['Longitude'].mean()
|
| 55 |
|
|
|
|
| 56 |
fig = px.line_mapbox(
|
| 57 |
subset,
|
| 58 |
lat="Latitude", lon="Longitude",
|
|
|
|
| 63 |
center={"lat": center_lat, "lon": center_lon}
|
| 64 |
)
|
| 65 |
|
|
|
|
| 66 |
scatter = px.scatter_mapbox(
|
| 67 |
subset,
|
| 68 |
lat="Latitude", lon="Longitude",
|
|
|
|
| 71 |
hover_data=["Time", "Time Diff (min)"],
|
| 72 |
color_continuous_scale="Bluered"
|
| 73 |
)
|
|
|
|
| 74 |
for trace in scatter.data:
|
| 75 |
fig.add_trace(trace)
|
| 76 |
|
|
|
|
| 77 |
fig.add_trace(px.scatter_mapbox(
|
| 78 |
pd.DataFrame([subset.iloc[0]]),
|
| 79 |
lat="Latitude", lon="Longitude",
|
|
|
|
| 84 |
text=["End"], color_discrete_sequence=["red"]).data[0])
|
| 85 |
|
| 86 |
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
|
| 87 |
+
|
| 88 |
+
# === Build display table
|
| 89 |
+
table = subset[[
|
| 90 |
+
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
|
| 91 |
+
'Type of call', 'Sales or service', 'Image URL'
|
| 92 |
+
]]
|
| 93 |
+
table = table.rename(columns={
|
| 94 |
+
'Dealership Name': '๐งญ Dealer',
|
| 95 |
+
'Time': '๐ Time',
|
| 96 |
+
'Time Diff (min)': 'โฑ๏ธ Time Spent',
|
| 97 |
+
'Type of call': '๐ Call Type',
|
| 98 |
+
'Sales or service': '๐ผ Category',
|
| 99 |
+
'Image URL': '๐ธ Photo'
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
# Add time summary
|
| 103 |
+
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
|
| 104 |
+
summary_row = pd.DataFrame([{
|
| 105 |
+
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
|
| 106 |
+
'Visit Order': '',
|
| 107 |
+
'๐ Time': '',
|
| 108 |
+
'โฑ๏ธ Time Spent': '',
|
| 109 |
+
'๐ Call Type': '',
|
| 110 |
+
'๐ผ Category': '',
|
| 111 |
+
'๐ธ Photo': ''
|
| 112 |
+
}])
|
| 113 |
+
table = pd.concat([table, summary_row], ignore_index=True)
|
| 114 |
+
|
| 115 |
return table, fig
|
| 116 |
|
| 117 |
# === Gradio UI ===
|