samarth-ht's picture
bug fix
229302a
raw
history blame
5.33 kB
import gradio as gr
from pathlib import Path
from scripts.inference import main
from omegaconf import OmegaConf
import argparse
from datetime import datetime
import subprocess
import os
CONFIG_PATH = Path("configs/unet/second_stage.yaml")
CHECKPOINT_PATH = Path("checkpoints/latentsync_unet.pt")
subprocess.run(["huggingface-cli", "download", "Hyathi/LatentSync", "--local-dir", "checkpoints", "--exclude", "*.git*", "README.md", "--token", os.environ["HF_TOKEN"]])
def process_video(
video_path,
audio_path,
guidance_scale,
inference_steps,
seed,
checkpoint_file,
):
# Create the temp directory if it doesn't exist
output_dir = Path("./temp")
output_dir.mkdir(parents=True, exist_ok=True)
# Use selected checkpoint or fall back to default
checkpoint_path = Path("checkpoints/unetFiles") / checkpoint_file if checkpoint_file else CHECKPOINT_PATH
# Convert paths to absolute Path objects and normalize them
video_file_path = Path(video_path)
video_path = video_file_path.absolute().as_posix()
audio_path = Path(audio_path).absolute().as_posix()
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
# Set the output path for the processed video
output_path = str(
output_dir / f"{video_file_path.stem}_{current_time}.mp4"
) # Change the filename as needed
config = OmegaConf.load(CONFIG_PATH)
config["run"].update(
{
"guidance_scale": guidance_scale,
"inference_steps": inference_steps,
}
)
# Parse the arguments
args = create_args(video_path, audio_path, output_path, guidance_scale, seed, checkpoint_path)
try:
result = main(
config=config,
args=args,
)
print("Processing completed successfully.")
return output_path # Ensure the output path is returned
except Exception as e:
print(f"Error during processing: {str(e)}")
raise gr.Error(f"Error during processing: {str(e)}")
def create_args(
video_path: str, audio_path: str, output_path: str, guidance_scale: float, seed: int, checkpoint_path: Path
) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--inference_ckpt_path", type=str, required=True)
parser.add_argument("--video_path", type=str, required=True)
parser.add_argument("--audio_path", type=str, required=True)
parser.add_argument("--video_out_path", type=str, required=True)
parser.add_argument("--guidance_scale", type=float, default=1.0)
parser.add_argument("--seed", type=int, default=1247)
return parser.parse_args(
[
"--inference_ckpt_path",
checkpoint_path.absolute().as_posix(),
"--video_path",
video_path,
"--audio_path",
audio_path,
"--video_out_path",
output_path,
"--guidance_scale",
str(guidance_scale),
"--seed",
str(seed),
]
)
# Add this function to get checkpoint files
def get_checkpoint_files():
unet_files_dir = Path("checkpoints/unetFiles")
if not unet_files_dir.exists():
return []
return [f.name for f in unet_files_dir.glob("*.pt")]
# Create Gradio interface
with gr.Blocks(title="SoundImage") as demo:
gr.Markdown(
"""
# SoundImage: Audio Conditioned Video Generation
Upload a video and audio file to process with SoundImage model.
"""
)
with gr.Row():
with gr.Column():
# Add checkpoint selector dropdown
checkpoint_dropdown = gr.Dropdown(
choices=get_checkpoint_files(),
label="Select Checkpoint",
value=get_checkpoint_files()[0] if get_checkpoint_files() else None
)
video_input = gr.Video(label="Input Video")
audio_input = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
guidance_scale = gr.Slider(
minimum=0.1,
maximum=3.0,
value=1.0,
step=0.1,
label="Guidance Scale",
)
inference_steps = gr.Slider(
minimum=1, maximum=50, value=20, step=1, label="Inference Steps"
)
with gr.Row():
seed = gr.Number(value=1247, label="Random Seed", precision=0)
process_btn = gr.Button("Process Video")
with gr.Column():
video_output = gr.Video(label="Output Video")
# gr.Examples(
# examples=[
# ["assets/demo1_video.mp4", "assets/demo1_audio.wav"],
# ["assets/demo2_video.mp4", "assets/demo2_audio.wav"],
# ["assets/demo3_video.mp4", "assets/demo3_audio.wav"],
# ],
# inputs=[video_input, audio_input],
# )
process_btn.click(
fn=process_video,
inputs=[
video_input,
audio_input,
guidance_scale,
inference_steps,
seed,
checkpoint_dropdown,
],
outputs=video_output,
)
if __name__ == "__main__":
demo.launch(inbrowser=True, share=True)