import io import re import wave import gradio as gr from fish_speech.utils.schema import ServeMessage, ServeTextPart, ServeVQPart from .fish_e2e import FishE2EAgent, FishE2EEventType def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): buffer = io.BytesIO() with wave.open(buffer, "wb") as wav_file: wav_file.setnchannels(channels) wav_file.setsampwidth(bit_depth // 8) wav_file.setframerate(sample_rate) wav_header_bytes = buffer.getvalue() buffer.close() return wav_header_bytes class ChatState: def __init__(self): self.conversation = [] self.added_systext = False self.added_sysaudio = False def get_history(self): results = [] for msg in self.conversation: results.append({"role": msg.role, "content": self.repr_message(msg)}) # Process assistant messages to extract questions and update user messages for i, msg in enumerate(results): if msg["role"] == "assistant": match = re.search(r"Question: (.*?)\n\nResponse:", msg["content"]) if match and i > 0 and results[i - 1]["role"] == "user": # Update previous user message with extracted question results[i - 1]["content"] += "\n" + match.group(1) # Remove the Question/Answer format from assistant message msg["content"] = msg["content"].split("\n\nResponse: ", 1)[1] return results def repr_message(self, msg: ServeMessage): response = "" for part in msg.parts: if isinstance(part, ServeTextPart): response += part.text elif isinstance(part, ServeVQPart): response += f"<audio {len(part.codes[0]) / 21:.2f}s>" return response def clear_fn(): return [], ChatState(), None, None, None async def process_audio_input( sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str ): if audio_input is None and not text_input: raise gr.Error("No input provided") agent = FishE2EAgent() # Create new agent instance for each request # Convert audio input to numpy array if isinstance(audio_input, tuple): sr, audio_data = audio_input elif text_input: sr = 44100 audio_data = None else: raise gr.Error("Invalid audio format") if isinstance(sys_audio_input, tuple): sr, sys_audio_data = sys_audio_input else: sr = 44100 sys_audio_data = None def append_to_chat_ctx( part: ServeTextPart | ServeVQPart, role: str = "assistant" ) -> None: if not state.conversation or state.conversation[-1].role != role: state.conversation.append(ServeMessage(role=role, parts=[part])) else: state.conversation[-1].parts.append(part) if state.added_systext is False and sys_text_input: state.added_systext = True append_to_chat_ctx(ServeTextPart(text=sys_text_input), role="system") if text_input: append_to_chat_ctx(ServeTextPart(text=text_input), role="user") audio_data = None result_audio = b"" async for event in agent.stream( sys_audio_data, audio_data, sr, 1, chat_ctx={ "messages": state.conversation, "added_sysaudio": state.added_sysaudio, }, ): if event.type == FishE2EEventType.USER_CODES: append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user") elif event.type == FishE2EEventType.SPEECH_SEGMENT: append_to_chat_ctx(ServeVQPart(codes=event.vq_codes)) yield state.get_history(), wav_chunk_header() + event.frame.data, None, None elif event.type == FishE2EEventType.TEXT_SEGMENT: append_to_chat_ctx(ServeTextPart(text=event.text)) yield state.get_history(), None, None, None yield state.get_history(), None, None, None async def process_text_input( sys_audio_input, sys_text_input, state: ChatState, text_input: str ): async for event in process_audio_input( sys_audio_input, sys_text_input, None, state, text_input ): yield event def create_demo(): with gr.Blocks() as demo: state = gr.State(ChatState()) with gr.Row(): # Left column (70%) for chatbot and notes with gr.Column(scale=7): chatbot = gr.Chatbot( [], elem_id="chatbot", bubble_full_width=False, height=600, type="messages", ) # notes = gr.Markdown( # """ # # Fish Agent # 1. 此Demo为Fish Audio自研端到端语言模型Fish Agent 3B版本. # 2. 你可以在我们的官方仓库找到代码以及权重,但是相关内容全部基于 CC BY-NC-SA 4.0 许可证发布. # 3. Demo为早期灰度测试版本,推理速度尚待优化. # # 特色 # 1. 该模型自动集成ASR与TTS部分,不需要外挂其它模型,即真正的端到端,而非三段式(ASR+LLM+TTS). # 2. 模型可以使用reference audio控制说话音色. # 3. 可以生成具有较强情感与韵律的音频. # """ # ) notes = gr.Markdown( """ # Fish Agent 1. This demo is Fish Audio's self-researh end-to-end language model, Fish Agent version 3B. 2. You can find the code and weights in our official repo in [gitub](https://github.com/fishaudio/fish-speech) and [hugging face](https://huggingface.co/fishaudio/fish-agent-v0.1-3b), but the content is released under a CC BY-NC-SA 4.0 licence. 3. The demo is an early alpha test version, the inference speed needs to be optimised. # Features 1. The model automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS). 2. The model can use reference audio to control the speech timbre. 3. The model can generate speech with strong emotion. """ ) # Right column (30%) for controls with gr.Column(scale=3): sys_audio_input = gr.Audio( sources=["upload"], type="numpy", label="Give a timbre for your assistant", ) sys_text_input = gr.Textbox( label="What is your assistant's role?", value="You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user's speech, then answer it in the following format: 'Question: [USER_SPEECH]\n\nAnswer: [YOUR_RESPONSE]\n'. You are required to use the following voice in this conversation.", type="text", ) audio_input = gr.Audio( sources=["microphone"], type="numpy", label="Speak your message" ) text_input = gr.Textbox(label="Or type your message", type="text") output_audio = gr.Audio( label="Assistant's Voice", streaming=True, autoplay=True, interactive=False, ) send_button = gr.Button("Send", variant="primary") clear_button = gr.Button("Clear") # Event handlers audio_input.stop_recording( process_audio_input, inputs=[sys_audio_input, sys_text_input, audio_input, state, text_input], outputs=[chatbot, output_audio, audio_input, text_input], show_progress=True, ) send_button.click( process_text_input, inputs=[sys_audio_input, sys_text_input, state, text_input], outputs=[chatbot, output_audio, audio_input, text_input], show_progress=True, ) text_input.submit( process_text_input, inputs=[sys_audio_input, sys_text_input, state, text_input], outputs=[chatbot, output_audio, audio_input, text_input], show_progress=True, ) clear_button.click( clear_fn, inputs=[], outputs=[chatbot, state, audio_input, output_audio, text_input], ) return demo if __name__ == "__main__": demo = create_demo() demo.launch(server_name="127.0.0.1", server_port=7860, share=True)