import shutil from copy import deepcopy from pathlib import Path import click import hydra import torch from hydra import compose, initialize from hydra.utils import instantiate from loguru import logger from fish_speech.models.text2semantic.llama import BaseTransformer from fish_speech.models.text2semantic.lora import get_merged_state_dict @click.command() @click.option("--lora-config", type=str, default="r_8_alpha_16") @click.option("--base-weight", type=str, default="checkpoints/fish-speech-1.4") @click.option("--lora-weight", type=str, required=True) @click.option("--output", type=str, required=True) def merge(lora_config, base_weight, lora_weight, output): output = Path(output) logger.info( f"Merging {base_weight} and {lora_weight} into {output} with {lora_config}" ) with initialize(version_base="1.3", config_path="../../fish_speech/configs/lora"): cfg = compose(config_name=lora_config) lora_config = instantiate(cfg) logger.info(f"Loaded lora model with config {lora_config}") llama_model = BaseTransformer.from_pretrained( path=base_weight, load_weights=True, lora_config=lora_config, ) logger.info(f"Loaded llama model") llama_state_dict = llama_model.state_dict() llama_state_dict = {k: v for k, v in llama_state_dict.items() if "lora" not in k} llama_state_dict_copy = deepcopy(llama_state_dict) lora_state_dict = torch.load(lora_weight, map_location="cpu") if "state_dict" in llama_state_dict: llama_state_dict = llama_state_dict["state_dict"] if "state_dict" in lora_state_dict: lora_state_dict = lora_state_dict["state_dict"] # remove prefix model. if any(k.startswith("model.") for k in llama_state_dict.keys()): llama_state_dict = { k.replace("model.", ""): v for k, v in llama_state_dict.items() if k.startswith("model.") } if any(k.startswith("model.") for k in lora_state_dict.keys()): lora_state_dict = { k.replace("model.", ""): v for k, v in lora_state_dict.items() if k.startswith("model.") } logger.info(f"Found {len(llama_state_dict)} keys in llama model") logger.info(f"Found {len(lora_state_dict)} keys in lora model") merged_state_dict = llama_state_dict | lora_state_dict llama_model.load_state_dict(merged_state_dict, strict=True) logger.info(f"Merged model loaded") # Trigger eval mode to merge lora llama_model.eval() llama_model.save_pretrained(output, drop_lora=True) logger.info(f"Saved merged model to {output}, validating") new_state_dict = torch.load(output / "model.pth", map_location="cpu") original_keys = set(llama_state_dict_copy.keys()) tolerance = 1e-5 for key in original_keys: diff_l1 = (new_state_dict[key] - llama_state_dict_copy[key]).abs().sum().item() if diff_l1 > tolerance: logger.info(f"Significant difference found in key: {key}") break if diff_l1 <= tolerance: logger.warning( "Merged model seems identical to the original model. Further validation might be needed." ) else: logger.info("Merged model is different from the original model, check passed") if __name__ == "__main__": merge()