|  | from __future__ import annotations | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import random | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from importlib.resources import files | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch.nn.utils.rnn import pad_sequence | 
					
						
						|  |  | 
					
						
						|  | import jieba | 
					
						
						|  | from pypinyin import lazy_pinyin, Style | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def seed_everything(seed=0): | 
					
						
						|  | random.seed(seed) | 
					
						
						|  | os.environ["PYTHONHASHSEED"] = str(seed) | 
					
						
						|  | torch.manual_seed(seed) | 
					
						
						|  | torch.cuda.manual_seed(seed) | 
					
						
						|  | torch.cuda.manual_seed_all(seed) | 
					
						
						|  | torch.backends.cudnn.deterministic = True | 
					
						
						|  | torch.backends.cudnn.benchmark = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def exists(v): | 
					
						
						|  | return v is not None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def default(v, d): | 
					
						
						|  | return v if exists(v) else d | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: | 
					
						
						|  | if not exists(length): | 
					
						
						|  | length = t.amax() | 
					
						
						|  |  | 
					
						
						|  | seq = torch.arange(length, device=t.device) | 
					
						
						|  | return seq[None, :] < t[:, None] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): | 
					
						
						|  | max_seq_len = seq_len.max().item() | 
					
						
						|  | seq = torch.arange(max_seq_len, device=start.device).long() | 
					
						
						|  | start_mask = seq[None, :] >= start[:, None] | 
					
						
						|  | end_mask = seq[None, :] < end[:, None] | 
					
						
						|  | return start_mask & end_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): | 
					
						
						|  | lengths = (frac_lengths * seq_len).long() | 
					
						
						|  | max_start = seq_len - lengths | 
					
						
						|  |  | 
					
						
						|  | rand = torch.rand_like(frac_lengths) | 
					
						
						|  | start = (max_start * rand).long().clamp(min=0) | 
					
						
						|  | end = start + lengths | 
					
						
						|  |  | 
					
						
						|  | return mask_from_start_end_indices(seq_len, start, end) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: | 
					
						
						|  | if not exists(mask): | 
					
						
						|  | return t.mean(dim=1) | 
					
						
						|  |  | 
					
						
						|  | t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) | 
					
						
						|  | num = t.sum(dim=1) | 
					
						
						|  | den = mask.float().sum(dim=1) | 
					
						
						|  |  | 
					
						
						|  | return num / den.clamp(min=1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: | 
					
						
						|  | list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] | 
					
						
						|  | text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def list_str_to_idx( | 
					
						
						|  | text: list[str] | list[list[str]], | 
					
						
						|  | vocab_char_map: dict[str, int], | 
					
						
						|  | padding_value=-1, | 
					
						
						|  | ) -> int["b nt"]: | 
					
						
						|  | list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] | 
					
						
						|  | text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): | 
					
						
						|  | """ | 
					
						
						|  | tokenizer   - "pinyin" do g2p for only chinese characters, need .txt vocab_file | 
					
						
						|  | - "char" for char-wise tokenizer, need .txt vocab_file | 
					
						
						|  | - "byte" for utf-8 tokenizer | 
					
						
						|  | - "custom" if you're directly passing in a path to the vocab.txt you want to use | 
					
						
						|  | vocab_size  - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols | 
					
						
						|  | - if use "char", derived from unfiltered character & symbol counts of custom dataset | 
					
						
						|  | - if use "byte", set to 256 (unicode byte range) | 
					
						
						|  | """ | 
					
						
						|  | if tokenizer in ["pinyin", "char"]: | 
					
						
						|  | tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt") | 
					
						
						|  | with open(tokenizer_path, "r", encoding="utf-8") as f: | 
					
						
						|  | vocab_char_map = {} | 
					
						
						|  | for i, char in enumerate(f): | 
					
						
						|  | vocab_char_map[char[:-1]] = i | 
					
						
						|  | vocab_size = len(vocab_char_map) | 
					
						
						|  | assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" | 
					
						
						|  |  | 
					
						
						|  | elif tokenizer == "byte": | 
					
						
						|  | vocab_char_map = None | 
					
						
						|  | vocab_size = 256 | 
					
						
						|  |  | 
					
						
						|  | elif tokenizer == "custom": | 
					
						
						|  | with open(dataset_name, "r", encoding="utf-8") as f: | 
					
						
						|  | vocab_char_map = {} | 
					
						
						|  | for i, char in enumerate(f): | 
					
						
						|  | vocab_char_map[char[:-1]] = i | 
					
						
						|  | vocab_size = len(vocab_char_map) | 
					
						
						|  |  | 
					
						
						|  | return vocab_char_map, vocab_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_char_to_pinyin(text_list, polyphone=True): | 
					
						
						|  | final_text_list = [] | 
					
						
						|  | god_knows_why_en_testset_contains_zh_quote = str.maketrans( | 
					
						
						|  | {"“": '"', "”": '"', "‘": "'", "’": "'"} | 
					
						
						|  | ) | 
					
						
						|  | custom_trans = str.maketrans({";": ","}) | 
					
						
						|  | for text in text_list: | 
					
						
						|  | char_list = [] | 
					
						
						|  | text = text.translate(god_knows_why_en_testset_contains_zh_quote) | 
					
						
						|  | text = text.translate(custom_trans) | 
					
						
						|  | for seg in jieba.cut(text): | 
					
						
						|  | seg_byte_len = len(bytes(seg, "UTF-8")) | 
					
						
						|  | if seg_byte_len == len(seg): | 
					
						
						|  | if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": | 
					
						
						|  | char_list.append(" ") | 
					
						
						|  | char_list.extend(seg) | 
					
						
						|  | elif polyphone and seg_byte_len == 3 * len(seg): | 
					
						
						|  | seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) | 
					
						
						|  | for c in seg: | 
					
						
						|  | if c not in "。,、;:?!《》【】—…": | 
					
						
						|  | char_list.append(" ") | 
					
						
						|  | char_list.append(c) | 
					
						
						|  | else: | 
					
						
						|  | for c in seg: | 
					
						
						|  | if ord(c) < 256: | 
					
						
						|  | char_list.extend(c) | 
					
						
						|  | else: | 
					
						
						|  | if c not in "。,、;:?!《》【】—…": | 
					
						
						|  | char_list.append(" ") | 
					
						
						|  | char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) | 
					
						
						|  | else: | 
					
						
						|  | char_list.append(c) | 
					
						
						|  | final_text_list.append(char_list) | 
					
						
						|  |  | 
					
						
						|  | return final_text_list | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repetition_found(text, length=2, tolerance=10): | 
					
						
						|  | pattern_count = defaultdict(int) | 
					
						
						|  | for i in range(len(text) - length + 1): | 
					
						
						|  | pattern = text[i : i + length] | 
					
						
						|  | pattern_count[pattern] += 1 | 
					
						
						|  | for pattern, count in pattern_count.items(): | 
					
						
						|  | if count > tolerance: | 
					
						
						|  | return True | 
					
						
						|  | return False | 
					
						
						|  |  |