Hwilner's picture
Update app.py
809d631 verified
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from transformers import pipeline
# Use a pipeline with a suitable model for sentiment analysis
model_name = "distilbert/distilbert-base-uncased-finetuned-sst-2-english"
analyzer = pipeline("text-classification", model=model_name)
def sentiment_analyzer(review):
try:
sentiment = analyzer(review)
return sentiment[0]['label']
except Exception as e:
print(f"Error in sentiment_analyzer: {e}")
return f"Error: {e}"
def sentiment_bar_chart(df):
sentiment_counts = df['Sentiment'].value_counts()
fig, ax = plt.subplots()
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', colors=['green', 'red'])
ax.set_title('Review Sentiment Counts')
ax.set_xlabel('Sentiment')
ax.set_ylabel('Count')
return fig
def read_reviews_and_analyze_sentiment(file_object):
try:
df = pd.read_excel(file_object)
if 'Reviews' not in df.columns:
raise ValueError("Excel file must contain a 'Reviews' column.")
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
chart_object = sentiment_bar_chart(df)
return df, chart_object
except Exception as e:
print(f"Error in read_reviews_and_analyze_sentiment: {e}")
return f"Error: {e}", None
gr.close_all()
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
title="Sentiment Analyzer",
description="This application will be used to analyze the sentiment based on the uploaded file.")
demo.launch()