Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from transformers import pipeline | |
# Use a pipeline with a suitable model for sentiment analysis | |
model_name = "distilbert/distilbert-base-uncased-finetuned-sst-2-english" | |
analyzer = pipeline("text-classification", model=model_name) | |
def sentiment_analyzer(review): | |
try: | |
sentiment = analyzer(review) | |
return sentiment[0]['label'] | |
except Exception as e: | |
print(f"Error in sentiment_analyzer: {e}") | |
return f"Error: {e}" | |
def sentiment_bar_chart(df): | |
sentiment_counts = df['Sentiment'].value_counts() | |
fig, ax = plt.subplots() | |
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', colors=['green', 'red']) | |
ax.set_title('Review Sentiment Counts') | |
ax.set_xlabel('Sentiment') | |
ax.set_ylabel('Count') | |
return fig | |
def read_reviews_and_analyze_sentiment(file_object): | |
try: | |
df = pd.read_excel(file_object) | |
if 'Reviews' not in df.columns: | |
raise ValueError("Excel file must contain a 'Reviews' column.") | |
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer) | |
chart_object = sentiment_bar_chart(df) | |
return df, chart_object | |
except Exception as e: | |
print(f"Error in read_reviews_and_analyze_sentiment: {e}") | |
return f"Error: {e}", None | |
gr.close_all() | |
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment, | |
inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")], | |
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")], | |
title="Sentiment Analyzer", | |
description="This application will be used to analyze the sentiment based on the uploaded file.") | |
demo.launch() | |