import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_groq import ChatGroq from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate import tempfile from gtts import gTTS import os import docx from pptx import Presentation def text_to_speech(text): tts = gTTS(text=text, lang='en') audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) temp_filename = audio_file.name tts.save(temp_filename) st.audio(temp_filename, format='audio/mp3') os.remove(temp_filename) def read_text_from_pdf(pdf_file): pdf_reader = PdfReader(pdf_file) text = "" for page in pdf_reader.pages: text += page.extract_text() return text def read_text_from_docx(docx_file): doc = docx.Document(docx_file) text = "\n".join([paragraph.text for paragraph in doc.paragraphs]) return text def read_text_from_pptx(pptx_file): presentation = Presentation(pptx_file) text = "" for slide in presentation.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text def get_text_from_file(file): content = "" if file.type == "application/pdf": content = read_text_from_pdf(file) elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": content = read_text_from_docx(file) elif file.type == "application/vnd.openxmlformats-officedocument.presentationml.presentation": content = read_text_from_pptx(file) elif file.type == "text/plain": content = file.getvalue().decode("utf-8") return content def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks, api_key): embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192") prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question, api_key): embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents": docs, "question": user_question}, return_only_outputs=True ) st.write("Replies:") if isinstance(response["output_text"], str): response_list = [response["output_text"]] else: response_list = response["output_text"] for text in response_list: st.write(text) # Convert text to speech for each response text_to_speech(text) def main(): st.set_page_config(layout="centered") st.header("Chat with DOCS") st.markdown("

ChatBot by Muhammad Huzaifa

", unsafe_allow_html=True) api_key = st.secrets["inference_api_key"] with st.sidebar: st.title("Menu:") uploaded_files = st.file_uploader("Upload your files (PDF, DOCX, PPTX, TXT)", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = "" for file in uploaded_files: file_text = get_text_from_file(file) raw_text += file_text text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks, api_key) st.success("Done") # Check if any document is uploaded if uploaded_files: user_question = st.text_input("Ask a question from the Docs") if user_question: user_input(user_question, api_key) else: st.write("Please upload a document (PDF, DOCX, PPTX, TXT) first to ask questions.") if __name__ == "__main__": main()