Huzaifa367 commited on
Commit
745bfc6
·
verified ·
1 Parent(s): bd1cf20

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -17
app.py CHANGED
@@ -50,22 +50,22 @@ def get_conversational_chain():
50
  return chain
51
 
52
  def user_input(user_question, api_key):
53
- st.spinner("Processing...")
54
- embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
55
- new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
56
- docs = new_db.similarity_search(user_question)
57
- chain = get_conversational_chain()
58
- response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
59
- st.success("Processed")
60
- st.write("Replies:")
61
- if isinstance(response["output_text"], str):
62
- response_list = [response["output_text"]]
63
- else:
64
- response_list = response["output_text"]
65
- for text in response_list:
66
- st.write(text)
67
- # Convert text to speech for each response
68
- text_to_speech(text)
69
 
70
  def main():
71
  st.set_page_config(layout="wide")
@@ -83,6 +83,7 @@ def main():
83
 
84
  # Initialize raw_text as None initially
85
  raw_text = None
 
86
 
87
  if pdf_docs:
88
  with col1:
@@ -92,8 +93,9 @@ def main():
92
  text_chunks = get_text_chunks(raw_text)
93
  get_vector_store(text_chunks, api_key)
94
  st.success("Processing Complete")
 
95
 
96
- if pdf_docs and st.success("Processing Complete"):
97
  with col1:
98
  user_question = st.text_input("Ask a question from the Docs")
99
  if user_question:
 
50
  return chain
51
 
52
  def user_input(user_question, api_key):
53
+ with st.spinner("Processing..."):
54
+ embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
55
+ new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
56
+ docs = new_db.similarity_search(user_question)
57
+ chain = get_conversational_chain()
58
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
59
+ st.success("Processed")
60
+ st.write("Replies:")
61
+ if isinstance(response["output_text"], str):
62
+ response_list = [response["output_text"]]
63
+ else:
64
+ response_list = response["output_text"]
65
+ for text in response_list:
66
+ st.write(text)
67
+ # Convert text to speech for each response
68
+ text_to_speech(text)
69
 
70
  def main():
71
  st.set_page_config(layout="wide")
 
83
 
84
  # Initialize raw_text as None initially
85
  raw_text = None
86
+ submitted = False
87
 
88
  if pdf_docs:
89
  with col1:
 
93
  text_chunks = get_text_chunks(raw_text)
94
  get_vector_store(text_chunks, api_key)
95
  st.success("Processing Complete")
96
+ submitted = True
97
 
98
+ if submitted:
99
  with col1:
100
  user_question = st.text_input("Ask a question from the Docs")
101
  if user_question: