Spaces:
Runtime error
Runtime error
File size: 4,949 Bytes
5cb6b47 2395412 5cb6b47 2395412 5cb6b47 2395412 5cb6b47 a005cbe 5cb6b47 2395412 5cb6b47 42260f8 b911af4 f3fc9b1 17d7717 5cb6b47 2395412 5cb6b47 2395412 5cb6b47 db952d0 2395412 db952d0 2395412 db952d0 5cb6b47 2395412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os
import docx
from pptx import Presentation
def text_to_speech(text):
tts = gTTS(text=text, lang='en')
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_filename = audio_file.name
tts.save(temp_filename)
st.audio(temp_filename, format='audio/mp3')
os.remove(temp_filename)
def read_text_from_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def read_text_from_docx(docx_file):
doc = docx.Document(docx_file)
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
return text
def read_text_from_pptx(pptx_file):
presentation = Presentation(pptx_file)
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
def get_text_from_file(file):
content = ""
if file.type == "application/pdf":
content = read_text_from_pdf(file)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
content = read_text_from_docx(file)
elif file.type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
content = read_text_from_pptx(file)
elif file.type == "text/plain":
content = file.getvalue().decode("utf-8")
return content
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question},
return_only_outputs=True
)
st.write("Replies:")
if isinstance(response["output_text"], str):
response_list = [response["output_text"]]
else:
response_list = response["output_text"]
for text in response_list:
st.write(text)
# Convert text to speech for each response
text_to_speech(text)
def main():
st.set_page_config(layout="centered")
st.header("Chat with DOCS")
st.markdown("<h1 style='font-size:24px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
api_key = st.secrets["inference_api_key"]
with st.sidebar:
st.title("Menu:")
uploaded_files = st.file_uploader("Upload your files (PDF, DOCX, PPTX, TXT)", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = ""
for file in uploaded_files:
file_text = get_text_from_file(file)
raw_text += file_text
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks, api_key)
st.success("Done")
# Check if any document is uploaded
if uploaded_files:
user_question = st.text_input("Ask a question from the Docs")
if user_question:
user_input(user_question, api_key)
else:
st.write("Please upload a document (PDF, DOCX, PPTX, TXT) first to ask questions.")
if __name__ == "__main__":
main() |