Spaces:
Runtime error
Runtime error
File size: 4,716 Bytes
5cb6b47 e5b175e 5cb6b47 237f3b8 d31d2c2 237f3b8 d31d2c2 237f3b8 d31d2c2 5cb6b47 d31d2c2 5cb6b47 a005cbe 5cb6b47 95d043d 5cb6b47 d31d2c2 42260f8 237f3b8 f3fc9b1 d31d2c2 e5b175e d31d2c2 83d4418 7bba854 e5b175e 7bba854 d31d2c2 e5b175e 83d4418 df11cb0 e5b175e df11cb0 e5b175e 95d043d e5b175e 0c11816 64b1361 7bba854 95d043d e5b175e d31d2c2 e5b175e 95d043d e5b175e 95d043d d31d2c2 5cb6b47 237f3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import streamlit as st
from streamlit.state.session_state import SessionState
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os
def text_to_speech(text):
tts = gTTS(text=text, lang='en')
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_filename = audio_file.name
tts.save(temp_filename)
st.audio(temp_filename, format='audio/mp3')
os.remove(temp_filename)
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
st.write("Replies:")
if isinstance(response["output_text"], str):
response_list = [response["output_text"]]
else:
response_list = response["output_text"]
for text in response_list:
st.write(text)
# Convert text to speech for each response
text_to_speech(text)
def main():
st.set_page_config(layout="wide")
st.header("Chat with DOCS")
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
api_key = st.secrets["inference_api_key"]
session_state = SessionState.get(pdf_docs=None, raw_text=None, processing_complete=False)
# Sidebar column for file upload
with st.sidebar:
st.header("Chat with PDF")
session_state.pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=["pdf"])
# Main column for displaying extracted text and user interaction
col1, col2 = st.columns([1, 2])
if session_state.pdf_docs:
with col1:
if st.button("Submit"):
with st.spinner("Processing..."):
session_state.raw_text = get_pdf_text(session_state.pdf_docs)
text_chunks = get_text_chunks(session_state.raw_text)
get_vector_store(text_chunks, api_key)
st.success("Processing Complete")
session_state.processing_complete = True
# Check if PDF documents are uploaded and processing is complete
if session_state.pdf_docs and session_state.raw_text and session_state.processing_complete:
with col1:
user_question = st.text_input("Ask a question from the Docs")
if user_question:
user_input(user_question, api_key)
# Display extracted text if available
if session_state.raw_text is not None:
with col2:
st.subheader("Extracted Text from PDF:")
st.text(session_state.raw_text)
# Show message if no PDF documents are uploaded
if not session_state.pdf_docs:
with col1:
st.write("Please upload a document first to proceed.")
if __name__ == "__main__":
main()
|