File size: 4,318 Bytes
5cb6b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237f3b8
d31d2c2
237f3b8
d31d2c2
237f3b8
d31d2c2
 
5cb6b47
 
 
 
 
d31d2c2
5cb6b47
 
 
 
 
 
 
 
 
 
 
 
 
a005cbe
5cb6b47
 
 
 
 
95d043d
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb6b47
 
d31d2c2
42260f8
237f3b8
f3fc9b1
d31d2c2
 
83d4418
7bba854
 
 
d31d2c2
 
 
df11cb0
83d4418
df11cb0
 
 
 
 
 
95d043d
 
 
0c11816
64b1361
 
 
7bba854
95d043d
 
d31d2c2
 
 
95d043d
 
 
 
 
d31d2c2
5cb6b47
237f3b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os

def text_to_speech(text):
    tts = gTTS(text=text, lang='en')
    audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
    temp_filename = audio_file.name
    tts.save(temp_filename)
    st.audio(temp_filename, format='audio/mp3')
    os.remove(temp_filename)

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    chunks = text_splitter.split_text(text)
    return chunks

def get_vector_store(text_chunks, api_key):
    embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
    vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
    vector_store.save_local("faiss_index")

def get_conversational_chain():
    prompt_template = """
    Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
    provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
    Context:\n {context}?\n
    Question: \n{question}\n
    Answer:
    """
    model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
    prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
    chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
    return chain

def user_input(user_question, api_key):
    embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
    new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
    docs = new_db.similarity_search(user_question)
    chain = get_conversational_chain()
    response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
    st.write("Replies:")
    if isinstance(response["output_text"], str):
        response_list = [response["output_text"]]
    else:
        response_list = response["output_text"]
    for text in response_list:
        st.write(text)
        # Convert text to speech for each response
        text_to_speech(text)

def main():
    st.set_page_config(layout="wide")
    st.header("Chat with DOCS")
    st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
    api_key = st.secrets["inference_api_key"]

    # Sidebar column for file upload
    with st.sidebar:
        st.header("Chat with PDF")
        pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=["pdf"])

    # Main column for displaying extracted text and user interaction
    col1, col2 = st.columns([1, 2])

    if pdf_docs:
        with col1:
            if st.button("Submit"):
                with st.spinner("Processing..."):
                    raw_text = get_pdf_text(pdf_docs)
                    text_chunks = get_text_chunks(raw_text)
                    get_vector_store(text_chunks, api_key)
                    st.success("Processing Complete")
    
    # Check if PDF documents are uploaded and processing is complete
    if pdf_docs and raw_text:
        with col1:
            user_question = st.text_input("Ask a question from the Docs")
            if user_question:
                user_input(user_question, api_key)

    # Display extracted text if available
    if raw_text:
        with col2:
            st.subheader("Extracted Text from PDF:")
            st.text(raw_text)

    # Show message if no PDF documents are uploaded
    if not pdf_docs:
        with col1:
            st.write("Please upload a document first to proceed.")

if __name__ == "__main__":
    main()