Zachary Greathouse
Zg/add head to head results (#19)
97b3bfd unverified
raw
history blame
11.8 kB
"""
crud.py
This module defines the operations for the Expressive TTS Arena project's database.
Since vote records are never updated or deleted, only functions to create and read votes are provided.
"""
# Standard Library Imports
from typing import List
# Third-Party Library Imports
from sqlalchemy import text
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.ext.asyncio import AsyncSession
# Local Application Imports
from src.config import logger
from src.custom_types import LeaderboardEntry, LeaderboardTableEntries, VotingResults
from src.database.models import VoteResult
async def create_vote(db: AsyncSession, vote_data: VotingResults) -> VoteResult:
"""
Create a new vote record in the database based on the given VotingResults data.
Args:
db (AsyncSession): The SQLAlchemy async database session.
vote_data (VotingResults): The vote data to persist.
Returns:
VoteResult: The newly created vote record.
"""
try:
# Create vote record
vote = VoteResult(
comparison_type=vote_data["comparison_type"],
winning_provider=vote_data["winning_provider"],
winning_option=vote_data["winning_option"],
option_a_provider=vote_data["option_a_provider"],
option_b_provider=vote_data["option_b_provider"],
option_a_generation_id=vote_data["option_a_generation_id"],
option_b_generation_id=vote_data["option_b_generation_id"],
voice_description=vote_data["character_description"],
text=vote_data["text"],
is_custom_text=vote_data["is_custom_text"],
)
db.add(vote)
try:
await db.commit()
await db.refresh(vote)
logger.info(f"Vote record created successfully: ID={vote.id}")
return vote
except SQLAlchemyError as db_error:
await db.rollback()
logger.error(f"Database error while creating vote: {db_error}")
raise
except ValueError as val_error:
logger.error(f"Invalid vote data: {val_error}")
raise
except Exception as e:
if db:
try:
await db.rollback()
except Exception as rollback_error:
logger.error(f"Error during rollback operation: {rollback_error}")
logger.error(f"Unexpected error creating vote record: {e}")
raise
async def get_leaderboard_stats(db: AsyncSession) -> LeaderboardTableEntries:
"""
Fetches voting statistics from the database to populate a leaderboard.
This function calculates voting statistics for TTS providers, using only the relevant
comparison types for each provider, and returns data structured for a leaderboard display.
Args:
db (AsyncSession): The SQLAlchemy async database session.
Returns:
LeaderboardTableEntries: A list of LeaderboardEntry objects containing rank,
provider name, model name, win rate, and total votes.
"""
default_leaderboard = [
LeaderboardEntry("1", "", "", "0%", "0"),
LeaderboardEntry("2", "", "", "0%", "0"),
LeaderboardEntry("3", "", "", "0%", "0"),
]
try:
query = text(
"""
WITH all_providers AS (
SELECT provider FROM (VALUES ('Hume AI'), ('ElevenLabs'), ('OpenAI')) AS p(provider)
),
provider_stats AS (
SELECT
'Hume AI' as provider,
COUNT(*) as total_comparisons,
SUM(CASE WHEN winning_provider = 'Hume AI' THEN 1 ELSE 0 END) as wins
FROM vote_results
WHERE comparison_type IN ('Hume AI - ElevenLabs', 'Hume AI - OpenAI')
UNION ALL
SELECT
'ElevenLabs' as provider,
COUNT(*) as total_comparisons,
SUM(CASE WHEN winning_provider = 'ElevenLabs' THEN 1 ELSE 0 END) as wins
FROM vote_results
WHERE comparison_type IN ('Hume AI - ElevenLabs', 'OpenAI - ElevenLabs')
UNION ALL
SELECT
'OpenAI' as provider,
COUNT(*) as total_comparisons,
SUM(CASE WHEN winning_provider = 'OpenAI' THEN 1 ELSE 0 END) as wins
FROM vote_results
WHERE comparison_type IN ('Hume AI - OpenAI', 'OpenAI - ElevenLabs')
)
SELECT
p.provider,
CASE
WHEN p.provider = 'Hume AI' THEN 'Octave'
WHEN p.provider = 'ElevenLabs' THEN 'Voice Design'
WHEN p.provider = 'OpenAI' THEN 'gpt-4o-mini-tts'
END as model,
CASE
WHEN COALESCE(ps.total_comparisons, 0) > 0
THEN ROUND((COALESCE(ps.wins, 0) * 100.0 / COALESCE(ps.total_comparisons, 1))::numeric, 2)
ELSE 0
END as win_rate,
COALESCE(ps.wins, 0) as total_votes
FROM all_providers p
LEFT JOIN provider_stats ps ON p.provider = ps.provider
ORDER BY win_rate DESC, total_votes DESC;
"""
)
result = await db.execute(query)
rows = result.fetchall()
# If no rows, return default
if not rows:
return default_leaderboard
# Format the data for the leaderboard
leaderboard_data = []
for i, row in enumerate(rows, 1):
provider, model, win_rate, total_votes = row
leaderboard_entry = LeaderboardEntry(
rank=f"{i}",
provider=provider,
model=model,
win_rate=f"{win_rate}%",
votes=f"{total_votes}"
)
leaderboard_data.append(leaderboard_entry)
return leaderboard_data
except SQLAlchemyError as e:
logger.error(f"Database error while fetching leaderboard stats: {e}")
return default_leaderboard
except Exception as e:
logger.error(f"Unexpected error while fetching leaderboard stats: {e}")
return default_leaderboard
async def get_head_to_head_battle_stats(db: AsyncSession) -> List[List[str]]:
"""
Fetches the total number of voting results for each comparison type (excluding "Hume AI - Hume AI").
Args:
db (AsyncSession): The SQLAlchemy async database session.
Returns:
List[List[str]]: A list of lists, where each inner list contains the comparison type and the count.
"""
default_counts = [
["Hume AI - OpenAI", "0"],
["Hume AI - ElevenLabs", "0"],
["OpenAI - ElevenLabs", "0"],
]
try:
query = text(
"""
SELECT
comparison_type,
COUNT(*) as total
FROM vote_results
WHERE comparison_type != 'Hume AI - Hume AI'
GROUP BY comparison_type
ORDER BY comparison_type;
"""
)
result = await db.execute(query)
rows = result.fetchall()
# If no rows, return default
if not rows:
return default_counts
# Format the results
formatted_results = []
for row in rows:
comparison_type, count = row
formatted_results.append([comparison_type, str(count)])
# Make sure all expected comparison types are included
expected_types = {"Hume AI - OpenAI", "Hume AI - ElevenLabs", "OpenAI - ElevenLabs"}
found_types = {row[0] for row in formatted_results}
# Add missing types with zero counts
for type_name in expected_types - found_types:
formatted_results.append([type_name, "0"])
# Sort the results by comparison type
formatted_results.sort(key=lambda x: x[0])
return formatted_results
except SQLAlchemyError as e:
logger.error(f"Database error while fetching comparison counts: {e}")
return default_counts
except Exception as e:
logger.error(f"Unexpected error while fetching comparison counts: {e}")
return default_counts
async def get_head_to_head_win_rate_stats(db: AsyncSession) -> List[List[str]]:
"""
Calculates the win rate for each provider against the other in head-to-head comparisons.
Args:
db (AsyncSession): The SQLAlchemy async database session.
Returns:
List[List[str]]: A list of lists, where each inner list contains:
- The comparison type
- The win rate of the first provider (the one named first in the comparison type)
- The win rate of the second provider (the one named second in the comparison type)
"""
default_win_rates = [
["Hume AI - OpenAI", "0%", "0%"],
["Hume AI - ElevenLabs", "0%", "0%"],
["OpenAI - ElevenLabs", "0%", "0%"],
]
try:
query = text(
"""
SELECT
comparison_type,
CASE WHEN COUNT(*) > 0
THEN ROUND(SUM(CASE
WHEN comparison_type = 'Hume AI - OpenAI' AND winning_provider = 'Hume AI' THEN 1
WHEN comparison_type = 'Hume AI - ElevenLabs' AND winning_provider = 'Hume AI' THEN 1
WHEN comparison_type = 'OpenAI - ElevenLabs' AND winning_provider = 'OpenAI' THEN 1
ELSE 0
END) * 100.0 / COUNT(*), 2)
ELSE 0
END as first_provider_win_rate,
CASE WHEN COUNT(*) > 0
THEN ROUND(SUM(CASE
WHEN comparison_type = 'Hume AI - OpenAI' AND winning_provider = 'OpenAI' THEN 1
WHEN comparison_type = 'Hume AI - ElevenLabs' AND winning_provider = 'ElevenLabs' THEN 1
WHEN comparison_type = 'OpenAI - ElevenLabs' AND winning_provider = 'ElevenLabs' THEN 1
ELSE 0
END) * 100.0 / COUNT(*), 2)
ELSE 0
END as second_provider_win_rate
FROM vote_results
WHERE comparison_type != 'Hume AI - Hume AI'
GROUP BY comparison_type
ORDER BY comparison_type;
"""
)
result = await db.execute(query)
rows = result.fetchall()
# If no rows, return default
if not rows:
return default_win_rates
# Format the results
formatted_results = []
for row in rows:
comparison_type, first_provider_win_rate, second_provider_win_rate = row
formatted_results.append([
comparison_type,
f"{first_provider_win_rate}%",
f"{second_provider_win_rate}%"
])
# Make sure all expected comparison types are included
expected_types = {"Hume AI - OpenAI", "Hume AI - ElevenLabs", "OpenAI - ElevenLabs"}
found_types = {row[0] for row in formatted_results}
# Add missing types with zero win rates
for type_name in expected_types - found_types:
formatted_results.append([type_name, "0%", "0%"])
# Sort the results by comparison type
formatted_results.sort(key=lambda x: x[0])
return formatted_results
except SQLAlchemyError as e:
logger.error(f"Database error while fetching provider win rates: {e}")
return default_win_rates
except Exception as e:
logger.error(f"Unexpected error while fetching provider win rates: {e}")
return default_win_rates