File size: 9,860 Bytes
3ce989d
 
 
f5237ec
 
 
 
 
3ce989d
4ea25cd
136ff40
 
f5237ec
4ea25cd
3ce989d
 
 
a807c4d
afdac46
 
 
 
 
 
 
 
 
 
 
 
 
 
a807c4d
3ce989d
 
4ea25cd
3ce989d
f5237ec
3ce989d
 
f5237ec
3ce989d
 
f5237ec
 
3ce989d
e9bcee8
4ea25cd
3ce989d
4ea25cd
3ce989d
adecb62
4ea25cd
3ce989d
f5237ec
adecb62
f5237ec
136ff40
f5237ec
 
 
 
 
adecb62
4ea25cd
afdac46
4ea25cd
 
f5237ec
afdac46
f5237ec
4ea25cd
f5237ec
 
afdac46
 
 
f5237ec
adecb62
3ce989d
e9bcee8
4ea25cd
 
3ce989d
f5237ec
 
4ea25cd
 
 
 
f5237ec
4ea25cd
 
f5237ec
4ea25cd
 
f5237ec
 
 
 
4ea25cd
f5237ec
4ea25cd
afdac46
 
 
 
 
60bcef1
 
afdac46
4ea25cd
 
 
 
 
f5237ec
4ea25cd
afdac46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea25cd
3ce989d
 
 
 
4ea25cd
3ce989d
 
f5237ec
3ce989d
 
60bcef1
afdac46
3ce989d
60bcef1
 
 
 
 
 
 
afdac46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce989d
f5237ec
60bcef1
3ce989d
60bcef1
afdac46
adecb62
e9bcee8
adecb62
afdac46
 
 
 
adecb62
3ce989d
afdac46
4ea25cd
afdac46
 
 
 
 
 
 
4ea25cd
 
 
 
 
 
96154e7
60bcef1
96154e7
 
 
 
3ce989d
4ea25cd
 
 
 
 
 
 
 
afdac46
 
4ea25cd
 
 
 
afdac46
 
 
 
 
 
 
 
 
 
 
 
f5237ec
4ea25cd
afdac46
f5237ec
4ea25cd
 
afdac46
4ea25cd
 
3ce989d
 
afdac46
 
 
 
 
 
 
e9bcee8
3ce989d
 
 
e9bcee8
 
3ce989d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
app.py

Gradio UI for interacting with the Anthropic API, Hume TTS API, and ElevenLabs TTS API.

Users enter a prompt, which is processed using Claude by Anthropic to generate text.
The text is then converted into speech using both Hume and ElevenLabs TTS APIs.
Users can compare the outputs in an interactive UI.
"""

# Standard Library Imports
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import random
# Third-Party Library Imports
import gradio as gr
# Local Application Imports
from src.config import logger
from src.constants import (
    OPTION_ONE, 
    OPTION_TWO,
    VOTE_FOR_OPTION_ONE,
    VOTE_FOR_OPTION_TWO,
    PROMPT_MAX_LENGTH, 
    PROMPT_MIN_LENGTH, 
    SAMPLE_PROMPTS
)
from src.integrations import (
    generate_text_with_claude, 
    text_to_speech_with_hume, 
    text_to_speech_with_elevenlabs
)
from src.utils import truncate_text, validate_prompt_length


def process_prompt(prompt: str):
    """
    Generates text from Claude API and converts it to speech using Hume and ElevenLabs.

    Args:
        prompt (str): User-provided text prompt.

    Returns:
        tuple: Generated text, two audio file paths (Hume & ElevenLabs), and 
               a dictionary mapping audio options to providers.
    """
    logger.info(f'Processing prompt: {truncate_text(prompt, max_length=100)}')

    try:
        # Validate prompt length
        validate_prompt_length(prompt, PROMPT_MAX_LENGTH, PROMPT_MIN_LENGTH)

        # Generate text
        generated_text = generate_text_with_claude(prompt)
        logger.info(f'Generated text ({len(generated_text)} characters).')

        # Generate TTS output in parallel
        with ThreadPoolExecutor(max_workers=2) as executor:
            hume_audio, elevenlabs_audio = executor.map(
                lambda func: func(),
                [partial(text_to_speech_with_hume, prompt, generated_text),
                partial(text_to_speech_with_elevenlabs, generated_text)]
            )

        logger.info(
            f'TTS generated: Hume={len(hume_audio)} bytes, ElevenLabs={len(elevenlabs_audio)} bytes'
        )

        # Randomize audio order
        options = [(hume_audio, 'Hume AI'), (elevenlabs_audio, 'ElevenLabs')]
        random.shuffle(options)

        return (
            generated_text,
            options[0][0], # Option 1 audio
            options[1][0], # Option 2 audio
            {OPTION_ONE: options[0][1], OPTION_TWO: options[1][1]}, # Option mapping
        )

    except ValueError as ve:
        logger.warning(f'Validation error: {ve}')
        return str(ve), None, None, {}

    except Exception as e:
        logger.error(f'Unexpected error: {e}')
        return 'An error occurred. Please try again.', None, None, {}


def run_process_prompt(prompt: str):
    """
    Manages UI state while processing a prompt.

    Args:
        prompt (str): User input prompt.

    Yields:
        tuple: UI state updates in three stages:
               1. Disables UI and clears previous outputs.
               2. Displays generated content.
               3. Re-enables UI after processing.
    """
    # Disable UI, clear previous outputs
    yield (
        gr.update(interactive=False, variant='secondary'), # Disable Generate Button
        gr.update(value=None), # Clear generated text
        gr.update(value=None), # Clear Option 1 audio
        gr.update(value=None), # Clear Option 2 audio
        None, # Clear option mapping
        gr.update(interactive=False, value=VOTE_FOR_OPTION_ONE, variant='secondary'), # Reset vote button 1
        gr.update(interactive=False, value=VOTE_FOR_OPTION_TWO, variant='secondary'), # Reset vote button 2
        None, # Reset Option 2 audio state
    )

    # Process the prompt
    generated_text, option1_audio, option2_audio, option_mapping = process_prompt(prompt)

    # Display generated text and audio
    yield (
        gr.update(interactive=True), # Re-enable Generate Button
        gr.update(value=generated_text), # Show generated text
        gr.update(value=option1_audio, autoplay=True), # Set Option 1 audio
        gr.update(value=option2_audio), # Set Option 2 audio
        option_mapping, # Store option mapping
        gr.update(), # Keep Vote button 1 disabled
        gr.update(), # Keep Vote button 2 disabled
        option2_audio, # Store Option 2 audio
    )


def vote(option_mapping: dict, selected_button: str):
    """
    Updates both vote buttons to reflect the user's choice.

    Args:
        option_mapping (dict): Maps "Option 1" and "Option 2" to their TTS providers.
        selected_button (str): The label of the button that was clicked.

    Returns:
        tuple[gr.update, gr.update]: Updated properties for both vote buttons.
    """
    if not option_mapping:
        return gr.update(), gr.update()  # No updates if mapping is missing

    # Determine which option was clicked
    is_option_1 = selected_button == VOTE_FOR_OPTION_ONE
    selected_option = OPTION_ONE if is_option_1 else OPTION_TWO
    other_option = OPTION_TWO if is_option_1 else OPTION_ONE

    # Get provider names
    selected_provider = option_mapping.get(selected_option, 'Unknown')
    other_provider = option_mapping.get(other_option, 'Unknown')

    # Return updated button states
    return (
        gr.update(value=f'{selected_provider} ✔', interactive=False, variant='primary') if is_option_1 else gr.update(value=other_provider, interactive=False, variant='secondary'),
        gr.update(value=other_provider, interactive=False, variant='secondary') if is_option_1 else gr.update(value=f'{selected_provider} ✔', interactive=False, variant='primary'),
        gr.update(variant='primary')
    )


def build_gradio_interface() -> gr.Blocks:
    """
    Constructs the Gradio user interface.

    Returns:
        gr.Blocks: The Gradio UI layout.
    """
    with gr.Blocks() as demo:
        # Title
        gr.Markdown('# Expressive TTS Arena')

        with gr.Column(variant='compact'):
            # Instructions
            gr.Markdown(
                'Generate text using **Claude by Anthropic**, then compare text-to-speech outputs '
                'from **Hume AI** and **ElevenLabs**. Listen to both samples and vote for your favorite!'
            )

            # Sample prompt select
            with gr.Row():
                sample_prompt_dropdown = gr.Dropdown(
                    choices=list(SAMPLE_PROMPTS.keys()),
                    label='Choose a sample prompt (or enter your own)',
                    value=None,
                    interactive=True,
                )

            # Prompt input
            with gr.Row():
                prompt_input = gr.Textbox(
                    label='Enter your prompt',
                    placeholder='Or type your own...',
                    lines=2,
                    max_lines=2,
                    show_copy_button=True,
                )

        # Generate Button
        generate_button = gr.Button('Generate', variant='primary')

        with gr.Column(variant='compact'):
            # Output text
            output_text = gr.Textbox(
                label='Generated Text',
                interactive=False,
                autoscroll=False,
                lines=5,
                max_lines=5,
                show_copy_button=True,
            )

            # Output audio
            with gr.Row():
                with gr.Column():
                    option1_audio_player = gr.Audio(label=OPTION_ONE, type='filepath', interactive=False)
                    vote_button_1 = gr.Button(VOTE_FOR_OPTION_ONE, interactive=False)

                with gr.Column():
                    option2_audio_player = gr.Audio(label=OPTION_TWO, type='filepath', interactive=False)
                    vote_button_2 = gr.Button(VOTE_FOR_OPTION_TWO, interactive=False)

        # UI state components
        option_mapping_state = gr.State()
        option2_audio_state = gr.State()

        # Event handlers
        sample_prompt_dropdown.change(
            fn=lambda choice: SAMPLE_PROMPTS.get(choice, ''),
            inputs=[sample_prompt_dropdown],
            outputs=[prompt_input],
        )

        generate_button.click(
            fn=run_process_prompt,
            inputs=[prompt_input],
            outputs=[
                generate_button,
                output_text,
                option1_audio_player,
                option2_audio_player,
                option_mapping_state,
                vote_button_1,
                vote_button_2,
                option2_audio_state,
            ],
        )

        vote_button_1.click(
            fn=vote,
            inputs=[option_mapping_state, vote_button_1],
            outputs=[vote_button_1, vote_button_2, generate_button]
        )

        vote_button_2.click(
            fn=vote,
            inputs=[option_mapping_state, vote_button_2],
            outputs=[vote_button_1, vote_button_2, generate_button]
        )

        # Auto-play second audio after first finishes
        option1_audio_player.stop(
            fn=lambda _: gr.update(value=None),
            inputs=[],
            outputs=[option2_audio_player],
        ).then(
            fn=lambda audio: gr.update(value=audio, autoplay=True),
            inputs=[option2_audio_state],
            outputs=[option2_audio_player],
        )

        # Enable voting after 2nd audio option playback finishes
        option2_audio_player.stop(
            fn=lambda _: (gr.update(interactive=True), gr.update(interactive=True)),  
            inputs=[],
            outputs=[vote_button_1, vote_button_2],
        )

    logger.debug('Gradio interface built successfully')
    return demo


if __name__ == '__main__':
    logger.info('Launching TTS Arena Gradio app...')
    demo = build_gradio_interface()
    demo.launch()