Spaces:
Sleeping
Sleeping
update
Browse files- Corriger.py +155 -132
- requirements.txt +1 -0
- users.yaml +0 -0
Corriger.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
from code.functions import pipeline_svg
|
| 3 |
from PIL import Image
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
| 6 |
from io import BytesIO
|
| 7 |
import copy
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
logo = Image.open("seguinmoreau.png")
|
| 12 |
st.set_page_config(
|
|
@@ -16,137 +17,159 @@ st.set_page_config(
|
|
| 16 |
initial_sidebar_state="expanded"
|
| 17 |
)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
"""
|
| 21 |
-
# Boîte à Outils de correction de logos :wrench:
|
| 22 |
-
|
| 23 |
-
Bienvenue dans la boîte à outils de correction de logos de Seguin Moreau.
|
| 24 |
-
|
| 25 |
-
### :hammer: Les outils
|
| 26 |
-
Dans cette boîte à outils, vous trouverez:
|
| 27 |
-
* Un outil de Correction automatique de logo (enlever les petits défauts, lissage, vectorisation, grossissement des traits trop fins.
|
| 28 |
-
* Un outil de Vectorisation (image en pixels => image vectorisée => image en pixels).
|
| 29 |
-
|
| 30 |
-
### :bulb: Mode d'emploi
|
| 31 |
-
* Cliquer sur 'Browse files'
|
| 32 |
-
* Sélectionner un logo
|
| 33 |
-
* La correction est automatique. Si la correction ne vous convient pas, il est possible de régler les paramètres en cliquant sur 'Paramétrage' à droite de l'image.
|
| 34 |
-
* Les deux paramètres permettent de corriger les défauts liés à la présence de gris sur le logo ou la 'pixélisation' du logo trop importante.
|
| 35 |
-
|
| 36 |
-
"""
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
logo = Image.open('seguinmoreau.png')
|
| 40 |
-
st.image(logo, width=100)
|
| 41 |
-
|
| 42 |
-
uploaded_files = st.file_uploader("Choisir un logo", accept_multiple_files=True)
|
| 43 |
-
|
| 44 |
-
image_width = 500
|
| 45 |
-
size_value = st.slider("Largeur de trait minimum", min_value=1, max_value=21, value=7, step=2)
|
| 46 |
-
|
| 47 |
-
size_value = (size_value - 1) // 2
|
| 48 |
-
|
| 49 |
-
#kernel_type_str = st.selectbox("Kernel type", ["Ellipse", "Rectangle", "Cross"])
|
| 50 |
-
kernel_type_str = "Ellipse"
|
| 51 |
-
dict_kernel_type = {"Ellipse": cv2.MORPH_ELLIPSE, "Rectangle": cv2.MORPH_RECT, "Cross": cv2.MORPH_CROSS}
|
| 52 |
-
kernel_type = dict_kernel_type[kernel_type_str]
|
| 53 |
-
|
| 54 |
-
for uploaded_file in uploaded_files:
|
| 55 |
-
col1, col2, col3 = st.columns([1, 1, 1])
|
| 56 |
-
col3.markdown("---")
|
| 57 |
-
|
| 58 |
-
image = Image.open(uploaded_file).convert('L')
|
| 59 |
-
image_input = np.array(image)
|
| 60 |
-
image = copy.deepcopy(image_input)
|
| 61 |
-
col1.image(image_input/255.0, caption="Image d'entrée", use_column_width='auto')
|
| 62 |
-
|
| 63 |
-
with col3:
|
| 64 |
-
with st.expander(":gear: Paramétrage"):
|
| 65 |
-
st.write("Si l'image contient du gris, faire varier le seuil ci-dessous:")
|
| 66 |
-
threshold = st.slider("Seuil pour convertir l'image en noir&blanc.", min_value=0, max_value=255, value=0,
|
| 67 |
-
step=1, key=f"{uploaded_file}_slider_threshold")
|
| 68 |
-
st.write("Si l'image est pixelisée, ou contient trop de détails, "
|
| 69 |
-
"augmenter la valeur ci-dessous:")
|
| 70 |
-
blur_value = st.slider("Seuil pour lisser l'image", min_value=1, max_value=11, value=1, step=2,
|
| 71 |
-
key=f"{uploaded_file}_slider_gaussian_sigma")
|
| 72 |
-
st.write("Si l'image contient des traits très fin (de l'odre du pixel),"
|
| 73 |
-
" augmenter le seuil ci-dessous, de 1 par 1:")
|
| 74 |
-
dilate_lines_value = st.slider("Dilatation de l'image d'origine: (en pixels)", min_value=0, max_value=5, value=0, step=1,key=f"{uploaded_file}_slider_dilation_image")
|
| 75 |
-
|
| 76 |
-
st.write("Taille d'exportation d'image:")
|
| 77 |
-
|
| 78 |
-
dpi_value = st.number_input("Valeur dpi:", key=f"{uploaded_file}_number_dpi_value", value=200)
|
| 79 |
-
side_width_value = st.number_input("Taille max de côté cible (cm):", key=f"{uploaded_file}_number_target_value", value=20)
|
| 80 |
-
new_largest_side_value = int(side_width_value / inch_value * dpi_value)
|
| 81 |
-
|
| 82 |
-
h, w, *_ = image.shape
|
| 83 |
-
|
| 84 |
-
# Resize image
|
| 85 |
-
ratio = w / h
|
| 86 |
-
if ratio > 1:
|
| 87 |
-
width = new_largest_side_value
|
| 88 |
-
height = int(new_largest_side_value / ratio)
|
| 89 |
-
else:
|
| 90 |
-
height = new_largest_side_value
|
| 91 |
-
width = int(ratio * new_largest_side_value)
|
| 92 |
-
|
| 93 |
-
target_width_value = st.number_input("Largeur cible (cm):", key=f"{uploaded_file}_number_width_value", value=0)
|
| 94 |
-
target_height_value = st.number_input("Hauteur cible (cm):", key=f"{uploaded_file}_number_height_value", value=0)
|
| 95 |
-
|
| 96 |
-
if target_width_value > 0 and target_height_value == 0:
|
| 97 |
-
width = int(target_width_value / inch_value * dpi_value)
|
| 98 |
-
height = int(width / ratio)
|
| 99 |
-
elif target_height_value > 0 and target_width_value == 0:
|
| 100 |
-
height = int(target_height_value / inch_value * dpi_value)
|
| 101 |
-
width = int(height * ratio)
|
| 102 |
-
elif target_height_value > 0 and target_width_value > 0:
|
| 103 |
-
st.warning("Vous ne pouvez pas modifier la largeur et la hauteur simultanément.")
|
| 104 |
-
|
| 105 |
-
if threshold > 0:
|
| 106 |
-
image = (image > threshold)*255
|
| 107 |
-
image = image.astype('uint8')
|
| 108 |
-
|
| 109 |
-
if blur_value > 0:
|
| 110 |
-
image = cv2.GaussianBlur(image, (blur_value, blur_value), blur_value - 1)
|
| 111 |
-
|
| 112 |
-
# Process image cv32f ==> cv32f
|
| 113 |
-
img_final = pipeline_svg(image, size_value=size_value, level=1, threshold=threshold, kernel_type=kernel_type, dilate_lines_value=dilate_lines_value)
|
| 114 |
-
|
| 115 |
-
col2.image(img_final, caption="Image corrigée", use_column_width='auto')
|
| 116 |
-
|
| 117 |
-
# Check for grayscale
|
| 118 |
-
tolerance = 10
|
| 119 |
-
ratio_of_gray_pixels = int(np.sum((tolerance < image)* (image < 255 - tolerance))/np.size(image)*100)
|
| 120 |
-
if ratio_of_gray_pixels > 1:
|
| 121 |
-
col3.warning(f":warning: Le nombre de pixels gris est élevé: {ratio_of_gray_pixels} % > 1%")
|
| 122 |
-
|
| 123 |
-
# Check reconstruction fidelity
|
| 124 |
-
distance = np.mean((np.array(image) - img_final)**2)
|
| 125 |
-
if distance > 10:
|
| 126 |
-
col3.warning(f":warning: Le logo est peut-être trop dégradé (MSE={distance:.2f} > 10).\nVérifier visuellement.")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
dim = (width, height)
|
| 131 |
-
# resize image
|
| 132 |
-
resized_img_final = cv2.resize(img_final, dim, interpolation=cv2.INTER_AREA)
|
| 133 |
-
resized_image_input = cv2.resize(image_input, dim, interpolation=cv2.INTER_AREA)
|
| 134 |
-
|
| 135 |
-
buf = BytesIO()
|
| 136 |
-
img_stacked = np.hstack((resized_image_input, resized_img_final))
|
| 137 |
-
img_final = Image.fromarray(img_stacked).convert("L")
|
| 138 |
-
img_final.save(buf, format="PNG")
|
| 139 |
-
byte_im= buf.getvalue()
|
| 140 |
-
|
| 141 |
-
btn = col3.download_button(
|
| 142 |
-
label=":inbox_tray: Télécharger l'image",
|
| 143 |
-
data=byte_im,
|
| 144 |
-
file_name=f"corrected_{uploaded_file.name}",
|
| 145 |
-
mime="image/png"
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
|
|
|
|
|
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import streamlit_authenticator as stauth
|
| 3 |
from code.functions import pipeline_svg
|
| 4 |
from PIL import Image
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
from io import BytesIO
|
| 8 |
import copy
|
| 9 |
+
import yaml
|
| 10 |
+
from yaml.loader import SafeLoader
|
| 11 |
|
| 12 |
logo = Image.open("seguinmoreau.png")
|
| 13 |
st.set_page_config(
|
|
|
|
| 17 |
initial_sidebar_state="expanded"
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# Authentication
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
with open('users.yaml') as file:
|
| 23 |
+
config = yaml.load(file, Loader=SafeLoader)
|
| 24 |
|
| 25 |
+
authenticator = stauth.Authenticate(
|
| 26 |
+
config['credentials'],
|
| 27 |
+
config['cookie']['name'],
|
| 28 |
+
config['cookie']['key'],
|
| 29 |
+
config['cookie']['expiry_days'],
|
| 30 |
+
config['preauthorized']
|
| 31 |
+
)
|
| 32 |
|
| 33 |
+
name, authentication_status, username = authenticator.login('Login', 'main')
|
| 34 |
+
|
| 35 |
+
if not authentication_status:
|
| 36 |
+
st.error("Nom d'utilisateur ou mot de passe incorrect")
|
| 37 |
+
elif authentication_status is None:
|
| 38 |
+
st.warning("Rentrer nom d'utilisateur et mot de passe")
|
| 39 |
+
elif authentication_status:
|
| 40 |
+
authenticator.logout('Logout', 'main')
|
| 41 |
+
# ------------------------------
|
| 42 |
+
|
| 43 |
+
inch_value = 2.54
|
| 44 |
+
|
| 45 |
+
logo = Image.open('seguinmoreau.png')
|
| 46 |
+
st.image(logo, width=200)
|
| 47 |
+
st.markdown(
|
| 48 |
+
"""
|
| 49 |
+
# Boîte à Outils de correction de logos :wrench:
|
| 50 |
+
|
| 51 |
+
Bienvenue dans la boîte à outils de correction de logos de Seguin Moreau.
|
| 52 |
+
|
| 53 |
+
### :hammer: Les outils
|
| 54 |
+
Dans cette boîte à outils, vous trouverez:
|
| 55 |
+
* Un outil de Correction automatique de logo (enlever les petits défauts, lissage, vectorisation, grossissement des traits trop fins).
|
| 56 |
+
|
| 57 |
+
### :bulb: Mode d'emploi
|
| 58 |
+
* Cliquer sur 'Browse files'
|
| 59 |
+
* Sélectionner un logo
|
| 60 |
+
* La correction est automatique. Si la correction ne vous convient pas, il est possible de régler les paramètres en cliquant sur 'Paramétrage' à droite de l'image.
|
| 61 |
+
* Les deux paramètres permettent de corriger les défauts liés à la présence de gris sur le logo ou la 'pixélisation' du logo trop importante.
|
| 62 |
+
|
| 63 |
+
"""
|
| 64 |
+
)
|
| 65 |
|
| 66 |
+
uploaded_files = st.file_uploader("Choisir un logo", accept_multiple_files=True)
|
| 67 |
+
|
| 68 |
+
image_width = 500
|
| 69 |
+
size_value = st.slider("Largeur de trait minimum", min_value=1, max_value=21, value=7, step=2)
|
| 70 |
+
|
| 71 |
+
size_value = (size_value - 1) // 2
|
| 72 |
+
|
| 73 |
+
# kernel_type_str = st.selectbox("Kernel type", ["Ellipse", "Rectangle", "Cross"])
|
| 74 |
+
kernel_type_str = "Ellipse"
|
| 75 |
+
dict_kernel_type = {"Ellipse": cv2.MORPH_ELLIPSE, "Rectangle": cv2.MORPH_RECT, "Cross": cv2.MORPH_CROSS}
|
| 76 |
+
kernel_type = dict_kernel_type[kernel_type_str]
|
| 77 |
+
|
| 78 |
+
for uploaded_file in uploaded_files:
|
| 79 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
| 80 |
+
col3.markdown("---")
|
| 81 |
+
|
| 82 |
+
image = Image.open(uploaded_file).convert('L')
|
| 83 |
+
image_input = np.array(image)
|
| 84 |
+
image = copy.deepcopy(image_input)
|
| 85 |
+
col1.image(image_input / 255.0, caption="Image d'entrée", use_column_width='auto')
|
| 86 |
+
|
| 87 |
+
with col3:
|
| 88 |
+
with st.expander(":gear: Paramétrage"):
|
| 89 |
+
st.write("Si l'image contient du gris, faire varier le seuil ci-dessous:")
|
| 90 |
+
threshold = st.slider("Seuil pour convertir l'image en noir&blanc.", min_value=0, max_value=255,
|
| 91 |
+
value=0,
|
| 92 |
+
step=1, key=f"{uploaded_file}_slider_threshold")
|
| 93 |
+
st.write("Si l'image est pixelisée, ou contient trop de détails, "
|
| 94 |
+
"augmenter la valeur ci-dessous:")
|
| 95 |
+
blur_value = st.slider("Seuil pour lisser l'image", min_value=1, max_value=11, value=1, step=2,
|
| 96 |
+
key=f"{uploaded_file}_slider_gaussian_sigma")
|
| 97 |
+
st.write("Si l'image contient des traits très fin (de l'odre du pixel),"
|
| 98 |
+
" augmenter le seuil ci-dessous, de 1 par 1:")
|
| 99 |
+
dilate_lines_value = st.slider("Dilatation de l'image d'origine: (en pixels)", min_value=0, max_value=5,
|
| 100 |
+
value=0, step=1, key=f"{uploaded_file}_slider_dilation_image")
|
| 101 |
+
|
| 102 |
+
st.write("Taille d'exportation d'image:")
|
| 103 |
+
|
| 104 |
+
dpi_value = st.number_input("Valeur dpi:", key=f"{uploaded_file}_number_dpi_value", value=200)
|
| 105 |
+
side_width_value = st.number_input("Taille max de côté cible (cm):",
|
| 106 |
+
key=f"{uploaded_file}_number_target_value", value=20)
|
| 107 |
+
new_largest_side_value = int(side_width_value / inch_value * dpi_value)
|
| 108 |
+
|
| 109 |
+
h, w, *_ = image.shape
|
| 110 |
+
|
| 111 |
+
# Resize image
|
| 112 |
+
ratio = w / h
|
| 113 |
+
if ratio > 1:
|
| 114 |
+
width = new_largest_side_value
|
| 115 |
+
height = int(new_largest_side_value / ratio)
|
| 116 |
+
else:
|
| 117 |
+
height = new_largest_side_value
|
| 118 |
+
width = int(ratio * new_largest_side_value)
|
| 119 |
+
|
| 120 |
+
target_width_value = st.number_input("Largeur cible (cm):", key=f"{uploaded_file}_number_width_value",
|
| 121 |
+
value=0)
|
| 122 |
+
target_height_value = st.number_input("Hauteur cible (cm):", key=f"{uploaded_file}_number_height_value",
|
| 123 |
+
value=0)
|
| 124 |
+
|
| 125 |
+
if target_width_value > 0 and target_height_value == 0:
|
| 126 |
+
width = int(target_width_value / inch_value * dpi_value)
|
| 127 |
+
height = int(width / ratio)
|
| 128 |
+
elif target_height_value > 0 and target_width_value == 0:
|
| 129 |
+
height = int(target_height_value / inch_value * dpi_value)
|
| 130 |
+
width = int(height * ratio)
|
| 131 |
+
elif target_height_value > 0 and target_width_value > 0:
|
| 132 |
+
st.warning("Vous ne pouvez pas modifier la largeur et la hauteur simultanément.")
|
| 133 |
+
|
| 134 |
+
if threshold > 0:
|
| 135 |
+
image = (image > threshold) * 255
|
| 136 |
+
image = image.astype('uint8')
|
| 137 |
+
|
| 138 |
+
if blur_value > 0:
|
| 139 |
+
image = cv2.GaussianBlur(image, (blur_value, blur_value), blur_value - 1)
|
| 140 |
+
|
| 141 |
+
# Process image cv32f ==> cv32f
|
| 142 |
+
img_final = pipeline_svg(image, size_value=size_value, level=1, threshold=threshold, kernel_type=kernel_type,
|
| 143 |
+
dilate_lines_value=dilate_lines_value)
|
| 144 |
+
|
| 145 |
+
col2.image(img_final, caption="Image corrigée", use_column_width='auto')
|
| 146 |
+
|
| 147 |
+
# Check for grayscale
|
| 148 |
+
tolerance = 10
|
| 149 |
+
ratio_of_gray_pixels = int(np.sum((tolerance < image) * (image < 255 - tolerance)) / np.size(image) * 100)
|
| 150 |
+
if ratio_of_gray_pixels > 1:
|
| 151 |
+
col3.warning(f":warning: Le nombre de pixels gris est élevé: {ratio_of_gray_pixels} % > 1%")
|
| 152 |
+
|
| 153 |
+
# Check reconstruction fidelity
|
| 154 |
+
distance = np.mean((np.array(image) - img_final) ** 2)
|
| 155 |
+
if distance > 10:
|
| 156 |
+
col3.warning(
|
| 157 |
+
f":warning: Le logo est peut-être trop dégradé (MSE={distance:.2f} > 10).\nVérifier visuellement.")
|
| 158 |
+
|
| 159 |
+
dim = (width, height)
|
| 160 |
+
# resize image
|
| 161 |
+
resized_img_final = cv2.resize(img_final, dim, interpolation=cv2.INTER_AREA)
|
| 162 |
+
resized_image_input = cv2.resize(image_input, dim, interpolation=cv2.INTER_AREA)
|
| 163 |
+
|
| 164 |
+
buf = BytesIO()
|
| 165 |
+
# img_stacked = np.hstack((resized_image_input, resized_img_final))
|
| 166 |
+
img_final = Image.fromarray(resized_image_input).convert("L")
|
| 167 |
+
img_final.save(buf, format="PNG")
|
| 168 |
+
byte_im = buf.getvalue()
|
| 169 |
+
|
| 170 |
+
btn = col3.download_button(
|
| 171 |
+
label=":inbox_tray: Télécharger l'image",
|
| 172 |
+
data=byte_im,
|
| 173 |
+
file_name=f"corrected_{uploaded_file.name}",
|
| 174 |
+
mime="image/png"
|
| 175 |
+
)
|
requirements.txt
CHANGED
|
@@ -6,3 +6,4 @@ scipy==1.6.2
|
|
| 6 |
streamlit==1.20.0
|
| 7 |
potracer==0.0.4
|
| 8 |
cairosvg==2.7.0
|
|
|
|
|
|
| 6 |
streamlit==1.20.0
|
| 7 |
potracer==0.0.4
|
| 8 |
cairosvg==2.7.0
|
| 9 |
+
streamlit-authenticator==0.2.1
|
users.yaml
ADDED
|
File without changes
|