Spaces:
Runtime error
Runtime error
App.py
Browse filesPermite tomar una imagen y entregar el texto de lo que contiene.
Es importante Cargar la imagen para que el modelo, permita entregar el texto.
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
|
7 |
+
# Cargar el modelo y el extractor de características
|
8 |
+
model_name = "microsoft/swin-small-patch4-window7-224"
|
9 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
10 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
11 |
+
|
12 |
+
def predict(image):
|
13 |
+
# Preprocesar la imagen
|
14 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
15 |
+
outputs = model(**inputs)
|
16 |
+
logits = outputs.logits
|
17 |
+
# Obtener las predicciones
|
18 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
19 |
+
top_probs, top_labels = torch.topk(probs, 3)
|
20 |
+
top_probs = top_probs.detach().numpy().flatten()
|
21 |
+
top_labels = top_labels.detach().numpy().flatten()
|
22 |
+
# Convertir las etiquetas a nombres
|
23 |
+
id2label = model.config.id2label
|
24 |
+
labels = [id2label[label] for label in top_labels]
|
25 |
+
return {labels[i]: float(top_probs[i]) for i in range(len(labels))}
|
26 |
+
|
27 |
+
titulo = "Mi primer demo con Hugging Face"
|
28 |
+
descripcion = "Este es un demo ejecutado durante la clase de Hugo Martinez."
|
29 |
+
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=predict,
|
32 |
+
inputs=gr.Image(label="Carga una imagen aquí"),
|
33 |
+
outputs=gr.Label(num_top_classes=3),
|
34 |
+
title=titulo,
|
35 |
+
description=descripcion
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|