Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,55 +10,76 @@ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENT
|
|
10 |
|
11 |
from io import BytesIO
|
12 |
|
13 |
-
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-
|
14 |
-
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM2-
|
15 |
_attn_implementation="flash_attention_2",
|
16 |
torch_dtype=torch.bfloat16).to("cuda:0")
|
17 |
|
18 |
|
19 |
-
|
20 |
def model_inference(
|
21 |
input_dict, history, max_tokens
|
22 |
):
|
23 |
text = input_dict["text"]
|
24 |
images = []
|
25 |
-
|
|
|
26 |
if history == []:
|
27 |
-
text = input_dict["text"]
|
28 |
-
resulting_messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
29 |
for file in input_dict["files"]:
|
30 |
-
if file.endswith(".
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
elif len(history) > 0:
|
37 |
resulting_messages = []
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
elif
|
51 |
resulting_messages.append({
|
52 |
"role": "user",
|
53 |
"content": user_content
|
54 |
})
|
55 |
resulting_messages.append({
|
56 |
"role": "assistant",
|
57 |
-
"content": [{"type": "text", "text":
|
58 |
})
|
59 |
-
user_content = []
|
60 |
-
|
61 |
-
|
62 |
|
63 |
|
64 |
if text == "" and not images:
|
@@ -66,7 +87,7 @@ def model_inference(
|
|
66 |
|
67 |
if text == "" and images:
|
68 |
gr.Error("Please input a text query along the images(s).")
|
69 |
-
|
70 |
inputs = processor.apply_chat_template(
|
71 |
resulting_messages,
|
72 |
add_generation_prompt=True,
|
@@ -102,14 +123,16 @@ examples=[
|
|
102 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
103 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
104 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
105 |
-
[{"text": "What art era
|
106 |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
107 |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
108 |
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
|
109 |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
|
|
|
|
110 |
]
|
111 |
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
|
112 |
-
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples.
|
113 |
examples=examples,
|
114 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
115 |
cache_examples=False,
|
|
|
10 |
|
11 |
from io import BytesIO
|
12 |
|
13 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
14 |
+
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct",
|
15 |
_attn_implementation="flash_attention_2",
|
16 |
torch_dtype=torch.bfloat16).to("cuda:0")
|
17 |
|
18 |
|
19 |
+
@spaces.GPU
|
20 |
def model_inference(
|
21 |
input_dict, history, max_tokens
|
22 |
):
|
23 |
text = input_dict["text"]
|
24 |
images = []
|
25 |
+
user_content = []
|
26 |
+
media_queue = []
|
27 |
if history == []:
|
|
|
|
|
28 |
for file in input_dict["files"]:
|
29 |
+
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
30 |
+
media_queue.append({"type": "image", "path": file})
|
31 |
+
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
32 |
+
media_queue.append({"type": "video", "path": file})
|
33 |
+
|
34 |
+
text = input_dict.get("text", "")
|
35 |
+
parts = re.split(r'(<image>|<video>)', text)
|
36 |
+
|
37 |
+
for part in parts:
|
38 |
+
if part == "<image>" and media_queue:
|
39 |
+
user_content.append(media_queue.pop(0))
|
40 |
+
elif part == "<video>" and media_queue:
|
41 |
+
user_content.append(media_queue.pop(0))
|
42 |
+
elif part.strip():
|
43 |
+
user_content.append({"type": "text", "text": part.strip()})
|
44 |
+
|
45 |
+
resulting_messages = [{"role": "user", "content": user_content}]
|
46 |
+
|
47 |
elif len(history) > 0:
|
48 |
resulting_messages = []
|
49 |
+
user_content = []
|
50 |
+
media_queue = []
|
51 |
+
for hist in history:
|
52 |
+
if hist["role"] == "user" and isinstance(hist["content"], tuple):
|
53 |
+
file_name = hist["content"][0]
|
54 |
+
if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
55 |
+
media_queue.append({"type": "image", "path": file_name})
|
56 |
+
elif file_name.endswith(".mp4"):
|
57 |
+
media_queue.append({"type": "video", "path": file_name})
|
58 |
+
|
59 |
+
|
60 |
+
for hist in history:
|
61 |
+
if hist["role"] == "user" and isinstance(hist["content"], str):
|
62 |
+
text = hist["content"]
|
63 |
+
parts = re.split(r'(<image>|<video>)', text)
|
64 |
+
|
65 |
+
for part in parts:
|
66 |
+
if part == "<image>" and media_queue:
|
67 |
+
user_content.append(media_queue.pop(0))
|
68 |
+
elif part == "<video>" and media_queue:
|
69 |
+
user_content.append(media_queue.pop(0))
|
70 |
+
elif part.strip():
|
71 |
+
user_content.append({"type": "text", "text": part.strip()})
|
72 |
|
73 |
+
elif hist["role"] == "assistant":
|
74 |
resulting_messages.append({
|
75 |
"role": "user",
|
76 |
"content": user_content
|
77 |
})
|
78 |
resulting_messages.append({
|
79 |
"role": "assistant",
|
80 |
+
"content": [{"type": "text", "text": hist["content"]}]
|
81 |
})
|
82 |
+
user_content = []
|
|
|
|
|
83 |
|
84 |
|
85 |
if text == "" and not images:
|
|
|
87 |
|
88 |
if text == "" and images:
|
89 |
gr.Error("Please input a text query along the images(s).")
|
90 |
+
print("resulting_messages", resulting_messages)
|
91 |
inputs = processor.apply_chat_template(
|
92 |
resulting_messages,
|
93 |
add_generation_prompt=True,
|
|
|
123 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
124 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
125 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
126 |
+
[{"text": "What art era this artpiece <image> and this artpiece <image> belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
|
127 |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
128 |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
129 |
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
|
130 |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
131 |
+
[{"text": "What is happening in the video?", "files": ["barcamadrichighlights.mpg"]}],
|
132 |
+
|
133 |
]
|
134 |
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
|
135 |
+
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples. To see how to interleave images, check the multiple image example.",
|
136 |
examples=examples,
|
137 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
138 |
cache_examples=False,
|