|
import os |
|
import json |
|
import gradio as gr |
|
import tempfile |
|
import torch |
|
import spaces |
|
from pathlib import Path |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
import subprocess |
|
import logging |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
def load_examples(json_path: str) -> dict: |
|
with open(json_path, 'r') as f: |
|
return json.load(f) |
|
|
|
def format_duration(seconds: int) -> str: |
|
hours = seconds // 3600 |
|
minutes = (seconds % 3600) // 60 |
|
secs = seconds % 60 |
|
if hours > 0: |
|
return f"{hours}:{minutes:02d}:{secs:02d}" |
|
return f"{minutes}:{secs:02d}" |
|
|
|
def get_video_duration_seconds(video_path: str) -> float: |
|
"""Use ffprobe to get video duration in seconds.""" |
|
cmd = [ |
|
"ffprobe", |
|
"-v", "quiet", |
|
"-print_format", "json", |
|
"-show_format", |
|
video_path |
|
] |
|
result = subprocess.run(cmd, capture_output=True, text=True) |
|
info = json.loads(result.stdout) |
|
return float(info["format"]["duration"]) |
|
|
|
class VideoHighlightDetector: |
|
def __init__( |
|
self, |
|
model_path: str, |
|
device: str = "cuda", |
|
batch_size: int = 8 |
|
): |
|
self.device = device |
|
self.batch_size = batch_size |
|
|
|
|
|
self.processor = AutoProcessor.from_pretrained(model_path) |
|
self.model = AutoModelForVision2Seq.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
|
|
).to(device) |
|
|
|
def analyze_video_content(self, video_path: str) -> str: |
|
"""Analyze video content to determine its type and description.""" |
|
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it." |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": system_message}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "video", "path": video_path}, |
|
{"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."} |
|
] |
|
} |
|
] |
|
|
|
inputs = self.processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device) |
|
|
|
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7) |
|
return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1] |
|
|
|
def determine_highlights(self, video_description: str) -> str: |
|
"""Determine what constitutes highlights based on video description.""" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": "You are a professional video editor specializing in creating viral highlight reels. You understand that the most engaging highlights are brief and focus only on exceptional moments that are statistically rare or particularly dramatic. Moments that would make viewers say 'I can't believe that happened!"}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [{"type": "text", "text": f"""Here is a description of a video: |
|
|
|
{video_description} |
|
|
|
Based on this description, list which rare segments should be included in a best of the best highlight."""}] |
|
} |
|
] |
|
|
|
print(messages) |
|
|
|
inputs = self.processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device) |
|
|
|
outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7) |
|
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1] |
|
|
|
def process_segment(self, video_path: str, highlight_types: str) -> bool: |
|
"""Process a video segment and determine if it contains highlights.""" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "video", "path": video_path}, |
|
{"type": "text", "text": f"""Do you see any of the following types of highlight moments in these frames? |
|
|
|
Potential highlights to look for: |
|
{highlight_types} |
|
|
|
Only answer yes if you see any of those moments and answer no if you don't."""} |
|
] |
|
} |
|
] |
|
|
|
inputs = self.processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(self.device) |
|
|
|
outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False) |
|
response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1] |
|
print(f"Segment response {response}") |
|
return "yes" in response |
|
|
|
def _concatenate_scenes( |
|
self, |
|
video_path: str, |
|
scene_times: list, |
|
output_path: str |
|
): |
|
"""Concatenate selected scenes into final video.""" |
|
if not scene_times: |
|
logger.warning("No scenes to concatenate, skipping.") |
|
return |
|
|
|
filter_complex_parts = [] |
|
concat_inputs = [] |
|
for i, (start_sec, end_sec) in enumerate(scene_times): |
|
filter_complex_parts.append( |
|
f"[0:v]trim=start={start_sec}:end={end_sec}," |
|
f"setpts=PTS-STARTPTS[v{i}];" |
|
) |
|
filter_complex_parts.append( |
|
f"[0:a]atrim=start={start_sec}:end={end_sec}," |
|
f"asetpts=PTS-STARTPTS[a{i}];" |
|
) |
|
concat_inputs.append(f"[v{i}][a{i}]") |
|
|
|
concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa]" |
|
filter_complex = "".join(filter_complex_parts) + concat_filter |
|
|
|
cmd = [ |
|
"ffmpeg", |
|
"-y", |
|
"-i", video_path, |
|
"-filter_complex", filter_complex, |
|
"-map", "[outv]", |
|
"-map", "[outa]", |
|
"-c:v", "libx264", |
|
"-c:a", "aac", |
|
output_path |
|
] |
|
|
|
logger.info(f"Running ffmpeg command: {' '.join(cmd)}") |
|
subprocess.run(cmd, check=True) |
|
|
|
def create_ui(examples_path: str, model_path: str): |
|
examples_data = load_examples(examples_path) |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("# Video Highlight Generator") |
|
gr.Markdown("Upload a video and get an automated highlight reel!") |
|
|
|
with gr.Row(): |
|
gr.Markdown("## Example Results") |
|
|
|
with gr.Row(): |
|
for example in examples_data["examples"]: |
|
with gr.Column(): |
|
gr.Video( |
|
value=example["original"]["url"], |
|
label=f"Original ({format_duration(example['original']['duration_seconds'])})", |
|
interactive=False |
|
) |
|
gr.Markdown(f"### {example['title']}") |
|
|
|
with gr.Column(): |
|
gr.Video( |
|
value=example["highlights"]["url"], |
|
label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})", |
|
interactive=False |
|
) |
|
with gr.Accordion("Chain of thought details", open=False): |
|
gr.Markdown(f"### Summary:\n{example['analysis']['video_description']}") |
|
gr.Markdown(f"### Highlights to search for:\n{example['analysis']['highlight_types']}") |
|
|
|
gr.Markdown("## Try It Yourself!") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_video = gr.Video( |
|
label="Upload your video (max 30 minutes)", |
|
interactive=True |
|
) |
|
process_btn = gr.Button("Process Video", variant="primary") |
|
|
|
with gr.Column(scale=1): |
|
output_video = gr.Video( |
|
label="Highlight Video", |
|
visible=False, |
|
interactive=False, |
|
) |
|
|
|
status = gr.Markdown() |
|
|
|
analysis_accordion = gr.Accordion( |
|
"Chain of thought details", |
|
open=True, |
|
visible=False |
|
) |
|
|
|
with analysis_accordion: |
|
video_description = gr.Markdown("", elem_id="video_desc") |
|
highlight_types = gr.Markdown("", elem_id="highlight_types") |
|
|
|
@spaces.GPU |
|
def on_process(video): |
|
|
|
yield [ |
|
"", |
|
"", |
|
"", |
|
gr.update(value=None, visible=False), |
|
gr.update(visible=False) |
|
] |
|
|
|
if not video: |
|
yield [ |
|
"Please upload a video", |
|
"", |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=False) |
|
] |
|
return |
|
|
|
try: |
|
duration = get_video_duration_seconds(video) |
|
if duration > 1800: |
|
yield [ |
|
"Video must be shorter than 30 minutes", |
|
"", |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=False) |
|
] |
|
return |
|
|
|
yield [ |
|
"Initializing video highlight detector...", |
|
"", |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=False) |
|
] |
|
|
|
detector = VideoHighlightDetector( |
|
model_path=model_path, |
|
batch_size=8 |
|
) |
|
|
|
yield [ |
|
"Analyzing video content...", |
|
"", |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=True) |
|
] |
|
|
|
video_desc = detector.analyze_video_content(video) |
|
formatted_desc = f"### Summary:\n {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}" |
|
|
|
yield [ |
|
"Determining highlight types...", |
|
formatted_desc, |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=True) |
|
] |
|
|
|
highlights = detector.determine_highlights(video_desc) |
|
formatted_highlights = f"### Highlights to search for:\n {highlights[:500] + '...' if len(highlights) > 500 else highlights}" |
|
|
|
|
|
temp_dir = "temp_segments" |
|
os.makedirs(temp_dir, exist_ok=True) |
|
|
|
segment_length = 10.0 |
|
duration = get_video_duration_seconds(video) |
|
kept_segments = [] |
|
segments_processed = 0 |
|
total_segments = int(duration / segment_length) |
|
|
|
for start_time in range(0, int(duration), int(segment_length)): |
|
segments_processed += 1 |
|
progress = int((segments_processed / total_segments) * 100) |
|
|
|
yield [ |
|
f"Processing segments... {progress}% complete", |
|
formatted_desc, |
|
formatted_highlights, |
|
gr.update(visible=False), |
|
gr.update(visible=True) |
|
] |
|
|
|
|
|
segment_path = f"{temp_dir}/segment_{start_time}.mp4" |
|
end_time = min(start_time + segment_length, duration) |
|
|
|
cmd = [ |
|
"ffmpeg", |
|
"-y", |
|
"-i", video, |
|
"-ss", str(start_time), |
|
"-t", str(segment_length), |
|
"-c:v", "libx264", |
|
"-preset", "ultrafast", |
|
"-pix_fmt", "yuv420p", |
|
segment_path |
|
] |
|
subprocess.run(cmd, check=True) |
|
|
|
|
|
if detector.process_segment(segment_path, highlights): |
|
print("KEEPING SEGMENT") |
|
kept_segments.append((start_time, end_time)) |
|
|
|
|
|
os.remove(segment_path) |
|
|
|
|
|
os.rmdir(temp_dir) |
|
|
|
|
|
if kept_segments: |
|
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: |
|
temp_output = tmp_file.name |
|
detector._concatenate_scenes(video, kept_segments, temp_output) |
|
|
|
yield [ |
|
"Processing complete!", |
|
formatted_desc, |
|
formatted_highlights, |
|
gr.update(value=temp_output, visible=True), |
|
gr.update(visible=True) |
|
] |
|
else: |
|
yield [ |
|
"No highlights detected in the video.", |
|
formatted_desc, |
|
formatted_highlights, |
|
gr.update(visible=False), |
|
gr.update(visible=True) |
|
] |
|
|
|
except Exception as e: |
|
logger.exception("Error processing video") |
|
yield [ |
|
f"Error processing video: {str(e)}", |
|
"", |
|
"", |
|
gr.update(visible=False), |
|
gr.update(visible=False) |
|
] |
|
finally: |
|
|
|
torch.cuda.empty_cache() |
|
|
|
process_btn.click( |
|
on_process, |
|
inputs=[input_video], |
|
outputs=[ |
|
status, |
|
video_description, |
|
highlight_types, |
|
output_video, |
|
analysis_accordion |
|
], |
|
queue=True, |
|
) |
|
|
|
return app |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct") |
|
app.launch() |