File size: 14,937 Bytes
880de81
 
 
 
4c7362f
1167d4f
141829b
 
 
 
880de81
141829b
 
880de81
 
 
 
 
 
 
 
 
 
 
 
 
141829b
 
 
 
 
 
 
 
 
 
 
 
880de81
141829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd7eae
141829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880de81
 
 
e43a4bd
946878e
880de81
 
 
36e4433
 
 
880de81
02abdab
6c8ddcc
880de81
6c8ddcc
880de81
84d7c6f
880de81
 
 
6c8ddcc
880de81
6c8ddcc
880de81
c7fdc4d
f652e04
 
75813eb
880de81
 
c43a83e
 
c7fdc4d
946878e
c43a83e
 
 
 
 
 
 
 
 
946878e
 
 
0cb8d8c
c7fdc4d
0cb8d8c
 
 
 
 
946878e
 
880de81
946878e
0cb8d8c
f652e04
 
 
 
 
 
 
 
141829b
880de81
8323202
be5d51f
 
 
 
 
8323202
0cb8d8c
880de81
946878e
 
c7fdc4d
8323202
c7fdc4d
8323202
 
 
 
 
0cb8d8c
 
8323202
141829b
8323202
 
 
c7fdc4d
8323202
0cb8d8c
141829b
 
f652e04
277bb56
946878e
8323202
 
 
 
 
 
 
0cb8d8c
946878e
f652e04
4bc123c
8323202
 
 
 
 
 
 
0cb8d8c
946878e
f652e04
141829b
 
 
 
0cb8d8c
141829b
 
fc0912b
141829b
 
 
 
 
 
fc0912b
 
 
 
 
 
 
 
141829b
 
 
 
fc0912b
141829b
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0912b
141829b
 
 
 
 
946878e
fc0912b
141829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946878e
 
141829b
8323202
 
 
 
 
 
 
f652e04
141829b
 
880de81
167ab4b
0cb8d8c
880de81
f38285f
 
 
 
 
0cb8d8c
 
8323202
880de81
 
 
 
 
6a9b659
 
4c7362f
1167d4f
141829b
6a9b659
4c7362f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import json
import gradio as gr
import tempfile
import torch
import spaces
from pathlib import Path
from transformers import AutoProcessor, AutoModelForVision2Seq
import subprocess
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def load_examples(json_path: str) -> dict:
    with open(json_path, 'r') as f:
        return json.load(f)

def format_duration(seconds: int) -> str:
    hours = seconds // 3600
    minutes = (seconds % 3600) // 60
    secs = seconds % 60
    if hours > 0:
        return f"{hours}:{minutes:02d}:{secs:02d}"
    return f"{minutes}:{secs:02d}"

def get_video_duration_seconds(video_path: str) -> float:
    """Use ffprobe to get video duration in seconds."""
    cmd = [
        "ffprobe",
        "-v", "quiet",
        "-print_format", "json",
        "-show_format",
        video_path
    ]
    result = subprocess.run(cmd, capture_output=True, text=True)
    info = json.loads(result.stdout)
    return float(info["format"]["duration"])

class VideoHighlightDetector:
    def __init__(
        self,
        model_path: str,
        device: str = "cuda",
        batch_size: int = 8
    ):
        self.device = device
        self.batch_size = batch_size
        
        # Initialize model and processor
        self.processor = AutoProcessor.from_pretrained(model_path)
        self.model = AutoModelForVision2Seq.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16,
            _attn_implementation="flash_attention_2"
        ).to(device)
        
    def analyze_video_content(self, video_path: str) -> str:
        """Analyze video content to determine its type and description."""
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."}
                ]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
        return self.processor.decode(outputs[0], skip_special_tokens=True)

    def determine_highlights(self, video_description: str) -> str:
        """Determine what constitutes highlights based on video description."""
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are a professional video editor specializing in creating viral highlight reels."}]
            },
            {
                "role": "user",
                "content": [{"type": "text", "text": f"""Based on this video description:
                
                {video_description}
                
                List which rare segments should be included in a best of the best highlight."""}]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
        return self.processor.decode(outputs[0], skip_special_tokens=True)

    def process_segment(self, video_path: str, highlight_types: str) -> bool:
        """Process a video segment and determine if it contains highlights."""
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": f"""Do you see any of the following types of highlight moments in this video segment? 
                    
                    Potential highlights to look for:
                    {highlight_types}
                    
                    Only answer yes if you see any of those moments and answer no if you don't."""}
                ]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
        response = self.processor.decode(outputs[0], skip_special_tokens=True).lower()
        
        return "yes" in response

    def _concatenate_scenes(
        self,
        video_path: str,
        scene_times: list,
        output_path: str
    ):
        """Concatenate selected scenes into final video."""
        if not scene_times:
            logger.warning("No scenes to concatenate, skipping.")
            return

        filter_complex_parts = []
        concat_inputs = []
        for i, (start_sec, end_sec) in enumerate(scene_times):
            filter_complex_parts.append(
                f"[0:v]trim=start={start_sec}:end={end_sec},"
                f"setpts=PTS-STARTPTS[v{i}];"
            )
            filter_complex_parts.append(
                f"[0:a]atrim=start={start_sec}:end={end_sec},"
                f"asetpts=PTS-STARTPTS[a{i}];"
            )
            concat_inputs.append(f"[v{i}][a{i}]")

        concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa]"
        filter_complex = "".join(filter_complex_parts) + concat_filter

        cmd = [
            "ffmpeg",
            "-y",
            "-i", video_path,
            "-filter_complex", filter_complex,
            "-map", "[outv]",
            "-map", "[outa]",
            "-c:v", "libx264",
            "-c:a", "aac",
            output_path
        ]

        logger.info(f"Running ffmpeg command: {' '.join(cmd)}")
        subprocess.run(cmd, check=True)

def create_ui(examples_path: str, model_path: str):
    examples_data = load_examples(examples_path)

    with gr.Blocks() as app:
        gr.Markdown("# Video Highlight Generator")
        gr.Markdown("Upload a video and get an automated highlight reel!")
        
        with gr.Row():
            gr.Markdown("## Example Results")

        with gr.Row():
            for example in examples_data["examples"]:
                with gr.Column():
                    gr.Video(
                        value=example["original"]["url"],
                        label=f"Original ({format_duration(example['original']['duration_seconds'])})",
                        interactive=False
                    )
                    gr.Markdown(f"### {example['title']}")
                
                with gr.Column():
                    gr.Video(
                        value=example["highlights"]["url"],
                        label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})",
                        interactive=False
                    )
                    with gr.Accordion("Chain of thought details", open=False):
                        gr.Markdown(f"### Summary:\n{example['analysis']['video_description']}")
                        gr.Markdown(f"### Highlights to search for:\n{example['analysis']['highlight_types']}")

        gr.Markdown("## Try It Yourself!")
        with gr.Row():
            with gr.Column(scale=1):
                input_video = gr.Video(
                    label="Upload your video (max 30 minutes)",
                    interactive=True
                )
                process_btn = gr.Button("Process Video", variant="primary")
            
            with gr.Column(scale=1):
                output_video = gr.Video(
                    label="Highlight Video",
                    visible=False,
                    interactive=False,
                )

                status = gr.Markdown()
        
                analysis_accordion = gr.Accordion(
                    "Chain of thought details", 
                    open=True, 
                    visible=False
                )
                
                with analysis_accordion:
                    video_description = gr.Markdown("", elem_id="video_desc")
                    highlight_types = gr.Markdown("", elem_id="highlight_types")

        @spaces.GPU
        def on_process(video):
            # Clear all components when starting new processing
            yield [
                "",  # Clear status
                "",  # Clear video description
                "",  # Clear highlight types
                gr.update(value=None, visible=False),  # Clear video
                gr.update(visible=False)  # Hide accordion
            ]
            
            if not video:
                yield [
                    "Please upload a video",
                    "",
                    "",
                    gr.update(visible=False),
                    gr.update(visible=False)
                ]
                return
            
            try:
                duration = get_video_duration_seconds(video)
                if duration > 1800:  # 30 minutes
                    yield [
                        "Video must be shorter than 30 minutes",
                        "",
                        "",
                        gr.update(visible=False),
                        gr.update(visible=False)
                    ]
                    return

                yield [
                    "Initializing video highlight detector...",
                    "",
                    "",
                    gr.update(visible=False),
                    gr.update(visible=False)
                ]

                detector = VideoHighlightDetector(
                    model_path=model_path,
                    batch_size=8
                )

                yield [
                    "Analyzing video content...",
                    "",
                    "",
                    gr.update(visible=False),
                    gr.update(visible=True)
                ]
                
                video_desc = detector.analyze_video_content(video)
                formatted_desc = f"### Summary:\n {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
                
                yield [
                    "Determining highlight types...",
                    formatted_desc,
                    "",
                    gr.update(visible=False),
                    gr.update(visible=True)
                ]
                
                highlights = detector.determine_highlights(video_desc)
                formatted_highlights = f"### Highlights to search for:\n {highlights[:500] + '...' if len(highlights) > 500 else highlights}"

                # Split video into segments
                temp_dir = "temp_segments"
                os.makedirs(temp_dir, exist_ok=True)
                
                segment_length = 10.0
                duration = get_video_duration_seconds(video)
                kept_segments = []
                segments_processed = 0
                total_segments = int(duration / segment_length)

                for start_time in range(0, int(duration), int(segment_length)):
                    segments_processed += 1
                    progress = int((segments_processed / total_segments) * 100)
                    
                    yield [
                        f"Processing segments... {progress}% complete",
                        formatted_desc,
                        formatted_highlights,
                        gr.update(visible=False),
                        gr.update(visible=True)
                    ]

                    # Create segment
                    segment_path = f"{temp_dir}/segment_{start_time}.mp4"
                    end_time = min(start_time + segment_length, duration)
                    
                    cmd = [
                        "ffmpeg",
                        "-y",
                        "-i", video,
                        "-ss", str(start_time),
                        "-t", str(segment_length),
                        "-c", "copy",
                        segment_path
                    ]
                    subprocess.run(cmd, check=True)

                    # Process segment
                    if detector.process_segment(segment_path, highlights):
                        kept_segments.append((start_time, end_time))
                    
                    # Clean up segment file
                    os.remove(segment_path)

                # Remove temp directory
                os.rmdir(temp_dir)

                # Create final video
                if kept_segments:
                    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
                        temp_output = tmp_file.name
                        detector._concatenate_scenes(video, kept_segments, temp_output)
                    
                    yield [
                        "Processing complete!",
                        formatted_desc,
                        formatted_highlights,
                        gr.update(value=temp_output, visible=True),
                        gr.update(visible=True)
                    ]
                else:
                    yield [
                        "No highlights detected in the video.",
                        formatted_desc,
                        formatted_highlights,
                        gr.update(visible=False),
                        gr.update(visible=True)
                    ]

            except Exception as e:
                logger.exception("Error processing video")
                yield [
                    f"Error processing video: {str(e)}",
                    "",
                    "",
                    gr.update(visible=False),
                    gr.update(visible=False)
                ]
            finally:
                # Clean up
                torch.cuda.empty_cache()

        process_btn.click(
            on_process,
            inputs=[input_video],
            outputs=[
                status,
                video_description,
                highlight_types,
                output_video,
                analysis_accordion
            ],
            queue=True,
        )

    return app

if __name__ == "__main__":
    subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

    # Initialize CUDA
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
    app.launch()