Spaces:
Running
on
A100
Running
on
A100
File size: 14,937 Bytes
880de81 4c7362f 1167d4f 141829b 880de81 141829b 880de81 141829b 880de81 141829b 3dd7eae 141829b 880de81 e43a4bd 946878e 880de81 36e4433 880de81 02abdab 6c8ddcc 880de81 6c8ddcc 880de81 84d7c6f 880de81 6c8ddcc 880de81 6c8ddcc 880de81 c7fdc4d f652e04 75813eb 880de81 c43a83e c7fdc4d 946878e c43a83e 946878e 0cb8d8c c7fdc4d 0cb8d8c 946878e 880de81 946878e 0cb8d8c f652e04 141829b 880de81 8323202 be5d51f 8323202 0cb8d8c 880de81 946878e c7fdc4d 8323202 c7fdc4d 8323202 0cb8d8c 8323202 141829b 8323202 c7fdc4d 8323202 0cb8d8c 141829b f652e04 277bb56 946878e 8323202 0cb8d8c 946878e f652e04 4bc123c 8323202 0cb8d8c 946878e f652e04 141829b 0cb8d8c 141829b fc0912b 141829b fc0912b 141829b fc0912b 141829b fc0912b 141829b 946878e fc0912b 141829b 946878e 141829b 8323202 f652e04 141829b 880de81 167ab4b 0cb8d8c 880de81 f38285f 0cb8d8c 8323202 880de81 6a9b659 4c7362f 1167d4f 141829b 6a9b659 4c7362f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import json
import gradio as gr
import tempfile
import torch
import spaces
from pathlib import Path
from transformers import AutoProcessor, AutoModelForVision2Seq
import subprocess
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_examples(json_path: str) -> dict:
with open(json_path, 'r') as f:
return json.load(f)
def format_duration(seconds: int) -> str:
hours = seconds // 3600
minutes = (seconds % 3600) // 60
secs = seconds % 60
if hours > 0:
return f"{hours}:{minutes:02d}:{secs:02d}"
return f"{minutes}:{secs:02d}"
def get_video_duration_seconds(video_path: str) -> float:
"""Use ffprobe to get video duration in seconds."""
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
class VideoHighlightDetector:
def __init__(
self,
model_path: str,
device: str = "cuda",
batch_size: int = 8
):
self.device = device
self.batch_size = batch_size
# Initialize model and processor
self.processor = AutoProcessor.from_pretrained(model_path)
self.model = AutoModelForVision2Seq.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2"
).to(device)
def analyze_video_content(self, video_path: str) -> str:
"""Analyze video content to determine its type and description."""
messages = [
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True)
def determine_highlights(self, video_description: str) -> str:
"""Determine what constitutes highlights based on video description."""
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a professional video editor specializing in creating viral highlight reels."}]
},
{
"role": "user",
"content": [{"type": "text", "text": f"""Based on this video description:
{video_description}
List which rare segments should be included in a best of the best highlight."""}]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True)
def process_segment(self, video_path: str, highlight_types: str) -> bool:
"""Process a video segment and determine if it contains highlights."""
messages = [
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": f"""Do you see any of the following types of highlight moments in this video segment?
Potential highlights to look for:
{highlight_types}
Only answer yes if you see any of those moments and answer no if you don't."""}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
response = self.processor.decode(outputs[0], skip_special_tokens=True).lower()
return "yes" in response
def _concatenate_scenes(
self,
video_path: str,
scene_times: list,
output_path: str
):
"""Concatenate selected scenes into final video."""
if not scene_times:
logger.warning("No scenes to concatenate, skipping.")
return
filter_complex_parts = []
concat_inputs = []
for i, (start_sec, end_sec) in enumerate(scene_times):
filter_complex_parts.append(
f"[0:v]trim=start={start_sec}:end={end_sec},"
f"setpts=PTS-STARTPTS[v{i}];"
)
filter_complex_parts.append(
f"[0:a]atrim=start={start_sec}:end={end_sec},"
f"asetpts=PTS-STARTPTS[a{i}];"
)
concat_inputs.append(f"[v{i}][a{i}]")
concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa]"
filter_complex = "".join(filter_complex_parts) + concat_filter
cmd = [
"ffmpeg",
"-y",
"-i", video_path,
"-filter_complex", filter_complex,
"-map", "[outv]",
"-map", "[outa]",
"-c:v", "libx264",
"-c:a", "aac",
output_path
]
logger.info(f"Running ffmpeg command: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
def create_ui(examples_path: str, model_path: str):
examples_data = load_examples(examples_path)
with gr.Blocks() as app:
gr.Markdown("# Video Highlight Generator")
gr.Markdown("Upload a video and get an automated highlight reel!")
with gr.Row():
gr.Markdown("## Example Results")
with gr.Row():
for example in examples_data["examples"]:
with gr.Column():
gr.Video(
value=example["original"]["url"],
label=f"Original ({format_duration(example['original']['duration_seconds'])})",
interactive=False
)
gr.Markdown(f"### {example['title']}")
with gr.Column():
gr.Video(
value=example["highlights"]["url"],
label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})",
interactive=False
)
with gr.Accordion("Chain of thought details", open=False):
gr.Markdown(f"### Summary:\n{example['analysis']['video_description']}")
gr.Markdown(f"### Highlights to search for:\n{example['analysis']['highlight_types']}")
gr.Markdown("## Try It Yourself!")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="Upload your video (max 30 minutes)",
interactive=True
)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
output_video = gr.Video(
label="Highlight Video",
visible=False,
interactive=False,
)
status = gr.Markdown()
analysis_accordion = gr.Accordion(
"Chain of thought details",
open=True,
visible=False
)
with analysis_accordion:
video_description = gr.Markdown("", elem_id="video_desc")
highlight_types = gr.Markdown("", elem_id="highlight_types")
@spaces.GPU
def on_process(video):
# Clear all components when starting new processing
yield [
"", # Clear status
"", # Clear video description
"", # Clear highlight types
gr.update(value=None, visible=False), # Clear video
gr.update(visible=False) # Hide accordion
]
if not video:
yield [
"Please upload a video",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
return
try:
duration = get_video_duration_seconds(video)
if duration > 1800: # 30 minutes
yield [
"Video must be shorter than 30 minutes",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
return
yield [
"Initializing video highlight detector...",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
detector = VideoHighlightDetector(
model_path=model_path,
batch_size=8
)
yield [
"Analyzing video content...",
"",
"",
gr.update(visible=False),
gr.update(visible=True)
]
video_desc = detector.analyze_video_content(video)
formatted_desc = f"### Summary:\n {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
yield [
"Determining highlight types...",
formatted_desc,
"",
gr.update(visible=False),
gr.update(visible=True)
]
highlights = detector.determine_highlights(video_desc)
formatted_highlights = f"### Highlights to search for:\n {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
# Split video into segments
temp_dir = "temp_segments"
os.makedirs(temp_dir, exist_ok=True)
segment_length = 10.0
duration = get_video_duration_seconds(video)
kept_segments = []
segments_processed = 0
total_segments = int(duration / segment_length)
for start_time in range(0, int(duration), int(segment_length)):
segments_processed += 1
progress = int((segments_processed / total_segments) * 100)
yield [
f"Processing segments... {progress}% complete",
formatted_desc,
formatted_highlights,
gr.update(visible=False),
gr.update(visible=True)
]
# Create segment
segment_path = f"{temp_dir}/segment_{start_time}.mp4"
end_time = min(start_time + segment_length, duration)
cmd = [
"ffmpeg",
"-y",
"-i", video,
"-ss", str(start_time),
"-t", str(segment_length),
"-c", "copy",
segment_path
]
subprocess.run(cmd, check=True)
# Process segment
if detector.process_segment(segment_path, highlights):
kept_segments.append((start_time, end_time))
# Clean up segment file
os.remove(segment_path)
# Remove temp directory
os.rmdir(temp_dir)
# Create final video
if kept_segments:
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
temp_output = tmp_file.name
detector._concatenate_scenes(video, kept_segments, temp_output)
yield [
"Processing complete!",
formatted_desc,
formatted_highlights,
gr.update(value=temp_output, visible=True),
gr.update(visible=True)
]
else:
yield [
"No highlights detected in the video.",
formatted_desc,
formatted_highlights,
gr.update(visible=False),
gr.update(visible=True)
]
except Exception as e:
logger.exception("Error processing video")
yield [
f"Error processing video: {str(e)}",
"",
"",
gr.update(visible=False),
gr.update(visible=False)
]
finally:
# Clean up
torch.cuda.empty_cache()
process_btn.click(
on_process,
inputs=[input_video],
outputs=[
status,
video_description,
highlight_types,
output_video,
analysis_accordion
],
queue=True,
)
return app
if __name__ == "__main__":
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Initialize CUDA
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
app.launch() |