Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
import spaces
|
|
@@ -111,56 +156,70 @@ def draw_ocr_bboxes(image, prediction):
|
|
| 111 |
|
| 112 |
def process_image(image, task_prompt, text_input=None):
|
| 113 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 114 |
-
if task_prompt == '
|
|
|
|
| 115 |
result = run_example(task_prompt, image)
|
| 116 |
return result, None
|
| 117 |
-
elif task_prompt == '
|
|
|
|
| 118 |
result = run_example(task_prompt, image)
|
| 119 |
return result, None
|
| 120 |
-
elif task_prompt == '
|
|
|
|
| 121 |
result = run_example(task_prompt, image)
|
| 122 |
return result, None
|
| 123 |
-
elif task_prompt == '
|
|
|
|
| 124 |
results = run_example(task_prompt, image)
|
| 125 |
fig = plot_bbox(image, results['<OD>'])
|
| 126 |
return results, fig_to_pil(fig)
|
| 127 |
-
elif task_prompt == '
|
|
|
|
| 128 |
results = run_example(task_prompt, image)
|
| 129 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 130 |
return results, fig_to_pil(fig)
|
| 131 |
-
elif task_prompt == '
|
|
|
|
| 132 |
results = run_example(task_prompt, image)
|
| 133 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 134 |
return results, fig_to_pil(fig)
|
| 135 |
-
elif task_prompt == '
|
|
|
|
| 136 |
results = run_example(task_prompt, image, text_input)
|
| 137 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 138 |
return results, fig_to_pil(fig)
|
| 139 |
-
elif task_prompt == '
|
|
|
|
| 140 |
results = run_example(task_prompt, image, text_input)
|
| 141 |
output_image = copy.deepcopy(image)
|
| 142 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 143 |
return results, output_image
|
| 144 |
-
elif task_prompt == '
|
|
|
|
| 145 |
results = run_example(task_prompt, image, text_input)
|
| 146 |
output_image = copy.deepcopy(image)
|
| 147 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 148 |
return results, output_image
|
| 149 |
-
elif task_prompt == '
|
|
|
|
| 150 |
results = run_example(task_prompt, image, text_input)
|
| 151 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 152 |
fig = plot_bbox(image, bbox_results)
|
| 153 |
return results, fig_to_pil(fig)
|
| 154 |
-
elif task_prompt == '
|
|
|
|
| 155 |
results = run_example(task_prompt, image, text_input)
|
| 156 |
return results, None
|
| 157 |
-
elif task_prompt == '
|
|
|
|
| 158 |
results = run_example(task_prompt, image, text_input)
|
| 159 |
return results, None
|
| 160 |
-
elif task_prompt == '
|
|
|
|
| 161 |
result = run_example(task_prompt, image)
|
| 162 |
return result, None
|
| 163 |
-
elif task_prompt == '
|
|
|
|
| 164 |
results = run_example(task_prompt, image)
|
| 165 |
output_image = copy.deepcopy(image)
|
| 166 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
|
@@ -183,11 +242,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 183 |
with gr.Column():
|
| 184 |
input_img = gr.Image(label="Input Picture")
|
| 185 |
task_prompt = gr.Dropdown(choices=[
|
| 186 |
-
'
|
| 187 |
-
'
|
| 188 |
-
'
|
| 189 |
-
'
|
| 190 |
-
'
|
| 191 |
], label="Task Prompt")
|
| 192 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 193 |
submit_btn = gr.Button(value="Submit")
|
|
@@ -197,8 +256,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 197 |
|
| 198 |
gr.Examples(
|
| 199 |
examples=[
|
| 200 |
-
["image1.jpg", '
|
| 201 |
-
["image2.jpg", '
|
| 202 |
],
|
| 203 |
inputs=[input_img, task_prompt],
|
| 204 |
outputs=[output_text, output_img],
|
|
@@ -209,4 +268,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 209 |
|
| 210 |
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
| 211 |
|
| 212 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
+
Hugging Face's logo
|
| 2 |
+
Hugging Face
|
| 3 |
+
Search models, datasets, users...
|
| 4 |
+
Models
|
| 5 |
+
Datasets
|
| 6 |
+
Spaces
|
| 7 |
+
Posts
|
| 8 |
+
Docs
|
| 9 |
+
Solutions
|
| 10 |
+
Pricing
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
Spaces:
|
| 15 |
+
|
| 16 |
+
gokaygokay
|
| 17 |
+
/
|
| 18 |
+
Florence-2
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
like
|
| 22 |
+
0
|
| 23 |
+
|
| 24 |
+
Logs
|
| 25 |
+
App
|
| 26 |
+
Files
|
| 27 |
+
Community
|
| 28 |
+
Settings
|
| 29 |
+
Florence-2
|
| 30 |
+
/
|
| 31 |
+
app.py
|
| 32 |
+
|
| 33 |
+
gokaygokay's picture
|
| 34 |
+
gokaygokay
|
| 35 |
+
Update app.py
|
| 36 |
+
ca16909
|
| 37 |
+
VERIFIED
|
| 38 |
+
12 minutes ago
|
| 39 |
+
raw
|
| 40 |
+
history
|
| 41 |
+
blame
|
| 42 |
+
edit
|
| 43 |
+
delete
|
| 44 |
+
No virus
|
| 45 |
+
8.31 kB
|
| 46 |
import gradio as gr
|
| 47 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 48 |
import spaces
|
|
|
|
| 156 |
|
| 157 |
def process_image(image, task_prompt, text_input=None):
|
| 158 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 159 |
+
if task_prompt == 'Caption':
|
| 160 |
+
task_prompt = '<CAPTION>'
|
| 161 |
result = run_example(task_prompt, image)
|
| 162 |
return result, None
|
| 163 |
+
elif task_prompt == 'Detailed Caption':
|
| 164 |
+
task_prompt = '<DETAILED_CAPTION>'
|
| 165 |
result = run_example(task_prompt, image)
|
| 166 |
return result, None
|
| 167 |
+
elif task_prompt == 'More Detailed Caption':
|
| 168 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 169 |
result = run_example(task_prompt, image)
|
| 170 |
return result, None
|
| 171 |
+
elif task_prompt == 'Object Detection':
|
| 172 |
+
task_prompt = '<OD>'
|
| 173 |
results = run_example(task_prompt, image)
|
| 174 |
fig = plot_bbox(image, results['<OD>'])
|
| 175 |
return results, fig_to_pil(fig)
|
| 176 |
+
elif task_prompt == 'Dense Region Caption':
|
| 177 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 178 |
results = run_example(task_prompt, image)
|
| 179 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 180 |
return results, fig_to_pil(fig)
|
| 181 |
+
elif task_prompt == 'Region Proposal':
|
| 182 |
+
task_prompt = '<REGION_PROPOSAL>'
|
| 183 |
results = run_example(task_prompt, image)
|
| 184 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 185 |
return results, fig_to_pil(fig)
|
| 186 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
| 187 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 188 |
results = run_example(task_prompt, image, text_input)
|
| 189 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 190 |
return results, fig_to_pil(fig)
|
| 191 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
| 192 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 193 |
results = run_example(task_prompt, image, text_input)
|
| 194 |
output_image = copy.deepcopy(image)
|
| 195 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 196 |
return results, output_image
|
| 197 |
+
elif task_prompt == 'Region to Segmentation':
|
| 198 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 199 |
results = run_example(task_prompt, image, text_input)
|
| 200 |
output_image = copy.deepcopy(image)
|
| 201 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 202 |
return results, output_image
|
| 203 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
| 204 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 205 |
results = run_example(task_prompt, image, text_input)
|
| 206 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 207 |
fig = plot_bbox(image, bbox_results)
|
| 208 |
return results, fig_to_pil(fig)
|
| 209 |
+
elif task_prompt == 'Region to Category':
|
| 210 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
| 211 |
results = run_example(task_prompt, image, text_input)
|
| 212 |
return results, None
|
| 213 |
+
elif task_prompt == 'Region to Description':
|
| 214 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 215 |
results = run_example(task_prompt, image, text_input)
|
| 216 |
return results, None
|
| 217 |
+
elif task_prompt == 'OCR':
|
| 218 |
+
task_prompt = '<OCR>'
|
| 219 |
result = run_example(task_prompt, image)
|
| 220 |
return result, None
|
| 221 |
+
elif task_prompt == 'OCR with Region':
|
| 222 |
+
task_prompt = '<OCR_WITH_REGION>'
|
| 223 |
results = run_example(task_prompt, image)
|
| 224 |
output_image = copy.deepcopy(image)
|
| 225 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
|
|
|
| 242 |
with gr.Column():
|
| 243 |
input_img = gr.Image(label="Input Picture")
|
| 244 |
task_prompt = gr.Dropdown(choices=[
|
| 245 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 246 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
| 247 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
| 248 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
| 249 |
+
'OCR', 'OCR with Region'
|
| 250 |
], label="Task Prompt")
|
| 251 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 252 |
submit_btn = gr.Button(value="Submit")
|
|
|
|
| 256 |
|
| 257 |
gr.Examples(
|
| 258 |
examples=[
|
| 259 |
+
["image1.jpg", 'Caption'],
|
| 260 |
+
["image2.jpg", 'Detailed Caption']
|
| 261 |
],
|
| 262 |
inputs=[input_img, task_prompt],
|
| 263 |
outputs=[output_text, output_img],
|
|
|
|
| 268 |
|
| 269 |
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
| 270 |
|
| 271 |
+
demo.launch(debug=True)
|