File size: 20,314 Bytes
a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 6c72e3f 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 a5f2bd2 579c976 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
import heapq
import json
import os
import re
import tempfile
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from pathlib import Path
from typing import Literal
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
import tenacity
from datatrove.io import get_datafolder
from datatrove.utils.stats import MetricStatsDict
PARTITION_OPTIONS = Literal["Top", "Bottom", "Most frequent (n_docs)"]
METRICS_LOCATION_DEFAULT = os.getenv("METRICS_LOCATION_DEFAULT", "hf://datasets/HuggingFaceFW-Dev/summary-stats-files")
def find_folders(base_folder, path):
base_folder = get_datafolder(base_folder)
if not base_folder.exists(path):
return []
return sorted(
[
folder["name"]
for folder in base_folder.ls(path, detail=True)
if folder["type"] == "directory" and not folder["name"].rstrip("/") == path
]
)
def find_metrics_folders(base_folder: str):
base_data_folder = get_datafolder(base_folder)
# First find all metric.json using globing for metric.json
metrics_merged = base_data_folder.glob("**/metric.json")
# Then for each of metrics.merged take the all but last two parts of the path (grouping/metric_name)
metrics_folders = [str(Path(x).parent.parent.parent) for x in metrics_merged]
# Finally get the unique paths
return sorted(list(set(metrics_folders)))
def fetch_datasets(base_folder: str):
datasets = sorted(find_metrics_folders(base_folder))
return datasets, gr.update(choices=datasets, value=None), fetch_groups(base_folder, datasets, None, "union")
def export_data(exported_data: MetricStatsDict, metric_name: str):
if not exported_data:
return None
# Assuming exported_data is a dictionary where the key is the dataset name and the value is the data to be exported
with tempfile.NamedTemporaryFile(mode="w", delete=False, prefix=metric_name, suffix=".json") as temp:
json.dump({
name: dt.to_dict()
for name, dt in exported_data.items()
}, temp)
temp_path = temp.name
return gr.update(visible=True, value=temp_path)
def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
if not datasets:
return gr.update(choices=[], value=None)
with ThreadPoolExecutor() as executor:
GROUPS = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, run)], datasets))
if len(GROUPS) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_choices = set.intersection(*(set(g) for g in GROUPS))
else:
new_choices = set.union(*(set(g) for g in GROUPS))
value = None
if old_groups:
value = list(set.intersection(new_choices, {old_groups}))
value = value[0] if value else None
# now take the intersection of all grups
return gr.update(choices=sorted(list(new_choices)), value=value)
def fetch_metrics(base_folder, datasets, group, old_metrics, type="intersection"):
with ThreadPoolExecutor() as executor:
metrics = list(
executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets))
if len(metrics) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_possibles_choices = set.intersection(*(set(s) for s in metrics))
else:
new_possibles_choices = set.union(*(set(s) for s in metrics))
value = None
if old_metrics:
value = list(set.intersection(new_possibles_choices, {old_metrics}))
value = value[0] if value else None
return gr.update(choices=sorted(list(new_possibles_choices)), value=value)
def reverse_search(base_folder, possible_datasets, grouping, metric_name):
with ThreadPoolExecutor() as executor:
found_datasets = list(executor.map(
lambda dataset: dataset if metric_exists(base_folder, dataset, metric_name, grouping) else None,
possible_datasets))
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
return "\n".join(found_datasets)
def reverse_search_add(datasets, reverse_search_results):
datasets = datasets or []
return sorted(list(set(datasets + reverse_search_results.strip().split("\n"))))
def metric_exists(base_folder, path, metric_name, group_by):
base_folder = get_datafolder(base_folder)
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json")
@tenacity.retry(stop=tenacity.stop_after_attempt(5))
def load_metrics(base_folder, path, metric_name, group_by):
base_folder = get_datafolder(base_folder)
with base_folder.open(
f"{path}/{group_by}/{metric_name}/metric.json",
) as f:
json_metric = json.load(f)
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malformed
return MetricStatsDict.from_dict(json_metric)
def prepare_for_non_grouped_plotting(metric, normalization, rounding):
metrics_rounded = defaultdict(lambda: 0)
for key, value in metric.items():
metrics_rounded[round(float(key), rounding)] += value.total
if normalization:
normalizer = sum(metrics_rounded.values())
metrics_rounded = {k: v / normalizer for k, v in metrics_rounded.items()}
# check that the sum of the values is 1
summed = sum(metrics_rounded.values())
assert abs(summed - 1) < 0.01, summed
return metrics_rounded
def load_data(dataset_path, base_folder, grouping, metric_name):
metrics = load_metrics(base_folder, dataset_path, metric_name, grouping)
return metrics
def prepare_for_group_plotting(metric, top_k, direction: PARTITION_OPTIONS, regex: str | None, rounding: int):
regex_compiled = re.compile(regex) if regex else None
metric = {key: value for key, value in metric.items() if not regex or regex_compiled.match(key)}
means = {key: round(float(value.mean), rounding) for key, value in metric.items()}
# Use heap to get top_k keys
if direction == "Top":
keys = heapq.nlargest(top_k, means, key=means.get)
elif direction == "Most frequent (n_docs)":
totals = {key: int(value.n) for key, value in metric.items()}
keys = heapq.nlargest(top_k, totals, key=totals.get)
else:
keys = heapq.nsmallest(top_k, means, key=means.get)
means = [means[key] for key in keys]
stds = [metric[key].standard_deviation for key in keys]
return keys, means, stds
def set_alpha(color, alpha):
"""
Takes a hex color and returns
rgba(r, g, b, a)
"""
if color.startswith('#'):
r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
else:
r, g, b = 0, 0, 0 # Fallback to black if the color format is not recognized
return f"rgba({r}, {g}, {b}, {alpha})"
def plot_scatter(
data: dict[str, dict[float, float]],
metric_name: str,
log_scale_x: bool,
log_scale_y: bool,
normalization: bool,
rounding: int,
progress: gr.Progress,
):
fig = go.Figure()
# First sort the histograms, by their name
data = {name: histogram for name, histogram in sorted(data.items())}
for i, (name, histogram) in enumerate(progress.tqdm(data.items(), total=len(data), desc="Plotting...")):
histogram_prepared = prepare_for_non_grouped_plotting(histogram, normalization, rounding)
x = sorted(histogram_prepared.keys())
y = [histogram_prepared[k] for k in x]
fig.add_trace(
go.Scatter(
x=x,
y=y,
mode="lines",
name=name,
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
)
)
yaxis_title = "Frequency" if normalization else "Total"
fig.update_layout(
title=f"Line Plots for {metric_name}",
xaxis_title=metric_name,
yaxis_title=yaxis_title,
xaxis_type="log" if log_scale_x and len(x) > 1 else None,
yaxis_type="log" if log_scale_y and len(y) > 1 else None,
width=1200,
height=600,
showlegend=True,
)
return fig
def plot_bars(
data: dict[str, list[dict[str, float]]],
metric_name: str,
top_k: int,
direction: PARTITION_OPTIONS,
regex: str | None,
rounding: int,
log_scale_x: bool,
log_scale_y: bool,
progress: gr.Progress,
):
fig = go.Figure()
x = []
y = []
for i, (name, histogram) in enumerate(progress.tqdm(data.items(), total=len(data), desc="Plotting...")):
x, y, stds = prepare_for_group_plotting(histogram, top_k, direction, regex, rounding)
fig.add_trace(go.Bar(
x=x,
y=y,
name=f"{name} Mean",
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
error_y=dict(type='data', array=stds, visible=True)
))
fig.update_layout(
title=f"Bar Plots for {metric_name}",
xaxis_title=metric_name,
yaxis_title="Avg. value",
xaxis_type="log" if log_scale_x and len(x) > 1 else None,
yaxis_type="log" if log_scale_y and len(y) > 1 else None,
autosize=True,
width=1200,
height=600,
showlegend=True,
)
return fig
def update_graph(
base_folder,
datasets,
metric_name,
grouping,
log_scale_x,
log_scale_y,
rounding,
normalization,
top_k,
direction,
regex,
progress=gr.Progress(),
):
if len(datasets) <= 0 or not metric_name or not grouping:
return None
# Placeholder for logic to rerender the graph based on the inputs
with ThreadPoolExecutor() as pool:
data = list(
progress.tqdm(
pool.map(
partial(load_data, base_folder=base_folder, metric_name=metric_name, grouping=grouping),
datasets,
),
total=len(datasets),
desc="Loading data...",
)
)
data = {path: result for path, result in zip(datasets, data)}
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x,
log_scale_y, progress), data, export_data(data, metric_name)
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y,
progress=gr.Progress()):
if rounding is None or top_k is None:
return None
graph_fc = (
partial(plot_scatter, normalization=normalization, rounding=rounding)
if grouping == "histogram"
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
)
return graph_fc(data=data, metric_name=metric_name, progress=progress, log_scale_x=log_scale_x,
log_scale_y=log_scale_y)
# Create the Gradio interface
with gr.Blocks() as demo:
datasets = gr.State([])
exported_data = gr.State([])
metrics_headline = gr.Markdown(value="# Metrics Exploration")
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=1):
base_folder = gr.Textbox(
label="Metrics Location",
value=METRICS_LOCATION_DEFAULT,
)
datasets_refetch = gr.Button("Fetch Datasets")
with gr.Column(scale=1):
regex_select = gr.Text(label="Regex filter", value=".*")
regex_button = gr.Button("Search")
with gr.Row():
datasets_selected = gr.Dropdown(
choices=[],
label="Datasets",
multiselect=True,
)
# add a readme description
readme_description = gr.Markdown(
label="Readme",
value="""
## How to use:
1) Specify Metrics location (Stats block `output_folder` without the last path segment) and click "Fetch Datasets"
2) Select datasets you are interested in using the dropdown or regex filter
3) Specify Grouping (global average/value/fqdn/suffix) and Metric name
4) Click "Update Graph"
## Groupings:
- **histogram**: Creates a line plot of values with their frequencies. If normalization is on, the frequencies sum to 1.
* normalize:
- **(fqdn/suffix)**: Creates a bar plot of the avg. values of the metric for full qualifed domain name/suffix of domain.
* k: the number of groups to show
* Top/Bottom/Most frequent (n_docs): Groups with the top/bottom k values/most prevalant docs are shown
- **none**: Shows the average value of given metric
## Reverse search:
To search for datasets containing a grouping and certain metric, use the Reverse search section.
Specify the search parameters and click "Search". This will show you found datasets in the "Found datasets" textbox. You can modify the selection after search by removing unwanted lines and clicking "Add to selection".
## Note:
The data might not be 100% representative, due to the sampling and optimistic merging of the metrics (fqdn/suffix).
""",
)
with gr.Column(scale=1):
# Define the dropdown for grouping
grouping_dropdown = gr.Dropdown(
choices=[],
label="Grouping",
multiselect=False,
)
# Define the dropdown for metric_name
metric_name_dropdown = gr.Dropdown(
choices=[],
label="Metric name",
multiselect=False,
)
update_button = gr.Button("Update Graph", variant="primary")
with gr.Row():
with gr.Column(scale=1):
log_scale_x_checkbox = gr.Checkbox(
label="Log scale x",
value=False,
)
log_scale_y_checkbox = gr.Checkbox(
label="Log scale y",
value=False,
)
rounding = gr.Number(
label="Rounding",
value=2,
)
normalization_checkbox = gr.Checkbox(
label="Normalize",
value=True, # Default value
visible=False
)
with gr.Row():
# export_data_button = gr.Button("Export data", visible=True, link=export_data_json)
export_data_json = gr.File(visible=False)
with gr.Column(scale=4):
with gr.Row(visible=False) as group_choices:
with gr.Column(scale=2):
group_regex = gr.Text(
label="Group Regex",
value=None,
)
with gr.Row():
top_select = gr.Number(
label="N Groups",
value=100,
interactive=True,
)
direction_checkbox = gr.Radio(
label="Partition",
choices=[
"Top",
"Bottom",
"Most frequent (n_docs)",
],
value="Most frequent (n_docs)",
)
# Define the graph output
with gr.Row():
graph_output = gr.Plot(label="Graph")
with gr.Row():
reverse_search_headline = gr.Markdown(value="# Reverse metrics search")
with gr.Row():
with gr.Column(scale=1):
# Define the dropdown for grouping
reverse_grouping_dropdown = gr.Dropdown(
choices=[],
label="Grouping",
multiselect=False,
)
# Define the dropdown for metric_name
reverse_metric_name_dropdown = gr.Dropdown(
choices=[],
label="Stat name",
multiselect=False,
)
with gr.Column(scale=1):
reverse_search_button = gr.Button("Search")
reverse_search_add_button = gr.Button("Add to selection")
with gr.Column(scale=2):
reverse_search_results = gr.Textbox(
label="Found datasets",
lines=10,
placeholder="Found datasets containing the group/metric name. You can modify the selection after search by removing unwanted lines and clicking Add to selection"
)
update_button.click(
fn=update_graph,
inputs=[
base_folder,
datasets_selected,
metric_name_dropdown,
grouping_dropdown,
log_scale_x_checkbox,
log_scale_y_checkbox,
rounding,
normalization_checkbox,
top_select,
direction_checkbox,
group_regex,
],
outputs=[graph_output, exported_data, export_data_json],
)
for inp in [normalization_checkbox, rounding, group_regex, direction_checkbox, top_select, log_scale_x_checkbox,
log_scale_y_checkbox]:
inp.change(
fn=plot_data,
inputs=[
exported_data,
metric_name_dropdown,
normalization_checkbox,
rounding,
grouping_dropdown,
top_select,
direction_checkbox,
group_regex,
log_scale_x_checkbox,
log_scale_y_checkbox,
],
outputs=[graph_output],
)
datasets_selected.change(
fn=fetch_groups,
inputs=[base_folder, datasets_selected, grouping_dropdown],
outputs=grouping_dropdown,
)
grouping_dropdown.select(
fn=fetch_metrics,
inputs=[base_folder, datasets_selected, grouping_dropdown, metric_name_dropdown],
outputs=metric_name_dropdown,
)
reverse_grouping_dropdown.select(
fn=partial(fetch_metrics, type="union"),
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_metric_name_dropdown],
outputs=reverse_metric_name_dropdown,
)
reverse_search_button.click(
fn=reverse_search,
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_metric_name_dropdown],
outputs=reverse_search_results,
)
reverse_search_add_button.click(
fn=reverse_search_add,
inputs=[datasets_selected, reverse_search_results],
outputs=datasets_selected,
)
datasets_refetch.click(
fn=fetch_datasets,
inputs=[base_folder],
outputs=[datasets, datasets_selected, reverse_grouping_dropdown],
)
def update_datasets_with_regex(regex, selected_runs, all_runs):
if not regex:
return
new_dsts = {run for run in all_runs if re.search(regex, run)}
if not new_dsts:
return gr.update(value=list(selected_runs))
dst_union = new_dsts.union(selected_runs or [])
return gr.update(value=sorted(list(dst_union)))
regex_button.click(
fn=update_datasets_with_regex,
inputs=[regex_select, datasets_selected, datasets],
outputs=datasets_selected,
)
def update_grouping_options(grouping):
if grouping == "histogram":
return {
normalization_checkbox: gr.Column(visible=True),
group_choices: gr.Column(visible=False),
}
else:
return {
normalization_checkbox: gr.Column(visible=False),
group_choices: gr.Column(visible=True),
}
grouping_dropdown.select(
fn=update_grouping_options,
inputs=[grouping_dropdown],
outputs=[normalization_checkbox, group_choices],
)
# Launch the application
if __name__ == "__main__":
demo.launch()
|