simple-mnist / app.py
HuggingDavid's picture
Upload with huggingface_hub
ea81160
raw
history blame
1.1 kB
import torch
import gradio as gr
from torchvision import transforms
from PIL import ImageOps
import os
from dotenv import load_dotenv
load_dotenv()
hf_writer = gr.HuggingFaceDatasetSaver(os.getenv('HF_TOKEN'), "simple-mnist-flagging")
def load_model():
model_dict = torch.load('linear_model.pt')
return model_dict
model = load_model()
convert_tensor = transforms.ToTensor()
def predict(img):
img = ImageOps.grayscale(img).resize((28,28))
image_tensor = convert_tensor(img).view(28*28)
res = image_tensor @ model['weights'] + model['bias']
res = res.sigmoid()
return {"It's 3": float(res), "It's 7": float(1-res)}
title = "Is it 7 or 3"
description = '<p><center>Write a number, 7 or 3, in the middle.</center></p>'
gr.Interface(fn=predict,
inputs=gr.Paint(type="pil", invert_colors=True),
outputs=gr.Label(num_top_classes=2),
title=title,
flagging_options=["incorrect","ambiguous"],
flagging_callback=hf_writer,
description=description,
allow_flagging='manual').launch()