Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from torchvision import transforms | |
from PIL import ImageOps | |
import os | |
from dotenv import load_dotenv | |
from torch import nn | |
import torch.nn.functional as F | |
class SimpleLenet(nn.Module): | |
def __init__(self, args=None): | |
super().__init__() | |
self.conv1 = nn.Conv2d(1, 6, 5, padding=2) # -> 6 channels, 28x28 | |
self.pool = nn.MaxPool2d(2) # -> 6 channels, 14x14 | |
self.conv2 = nn.Conv2d(6, 120, 14) #-> 120 channels, 1x1 | |
self.fc1 = nn.Linear(120, 10) | |
self.fc2 = nn.Linear(10, 10) | |
def __call__(self, x): | |
xx = F.relu(self.conv1(x)) | |
xx = F.relu(self.pool(xx)) | |
xx = F.relu(self.conv2(xx)) | |
xx = xx.flatten(1) | |
xx = F.relu(self.fc1(xx)) | |
return self.fc2(xx) | |
load_dotenv() | |
hf_writer = gr.HuggingFaceDatasetSaver(os.getenv('HF_TOKEN'), "simple-mnist-flagging") | |
def load_model(): | |
model = SimpleLenet() | |
model.load_state_dict(torch.load('model.pt')) | |
model.eval() | |
return model | |
model = load_model() | |
convert_tensor = transforms.ToTensor() | |
def predict(img): | |
img = ImageOps.grayscale(img).resize((28,28)) | |
image_tensor = convert_tensor(img).view(1, 1, 28, 28) | |
logits = model(image_tensor) | |
pred = torch.argmax(logits, dim=1) | |
return pred.tolist()[0] | |
title = "Handwritten digit recognition" | |
description = '<p><center>Write a single digit in the middle of the canvas</center></p>' | |
gr.Interface(fn=predict, | |
inputs=gr.Paint(type="pil", invert_colors=True), | |
outputs="text", | |
title=title, | |
flagging_options=["incorrect","ambiguous"], | |
flagging_callback=hf_writer, | |
description=description, | |
allow_flagging='manual').launch() | |