Spaces:
Runtime error
Runtime error
File size: 10,981 Bytes
970607e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import argparse
import torch
import os
import json
from tqdm import tqdm
from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from dc.model.builder import load_pretrained_model
from dc.utils import disable_torch_init
from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from datasets import load_dataset
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def create_one_query(problem, shot_num, shot_type, use_caption):
### [1] Demo prompt
demo_prompt = ""
### [2] Test query
# problem info
question = problem['question']
unit = problem['unit']
choices = problem['choices']
# caption = problem['caption']
precision = problem['precision']
question_type = problem['question_type']
answer_type = problem['answer_type']
# hint
if shot_type == 'solution':
if question_type == "multi_choice":
assert answer_type == "text"
hint_text = f"Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end."
else:
assert answer_type in ["integer", "float", "list"]
if answer_type == "integer":
hint_text = f"Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end."
elif answer_type == "float" and precision == 1:
hint_text = f"Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end."
elif answer_type == "float" and precision == 2:
hint_text = f"Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end."
elif answer_type == "list":
hint_text = f"Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end."
else:
assert shot_type == 'code'
hint_text = "Hint: Please generate a python code to solve the problem"
# question
question_text = f"Question: {question}"
if unit:
question_text += f" (Unit: {unit})"
# choices
if choices:
# choices: (A) 1.2 (B) 1.3 (C) 1.4 (D) 1.5
texts = ["Choices:"]
for i, choice in enumerate(choices):
texts.append(f"({chr(ord('A')+i)}) {choice}")
choices_text = "\n".join(texts)
else:
choices_text = ""
# prompt
if shot_type == 'solution':
prompt = "Solution: "
else:
assert shot_type == 'code'
prompt = "Python code: "
elements = [hint_text, question_text, choices_text]
test_query = "\n".join([e for e in elements if e != ""])
### [3] Final query
query = demo_prompt + "\n\n" + test_query
query = query.strip()
return query
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name,
load_8bit=args.load_8bit)
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
dataset = load_dataset('AI4Math/MathVista')['testmini']
questions = [dict(pid=d['pid'], info=d) for d in dataset]
# questions = [dict(pid=pid, info=qs) for pid, qs in questions.items()]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
terminators = [
tokenizer.eos_token_id
]
if args.conv_mode == 'llama_3':
if tokenizer.unk_token is None:
tokenizer.unk_token = "<|reserved_special_token_0|>"
tokenizer.pad_token = tokenizer.unk_token
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
if os.path.exists(answers_file):
file = open(answers_file, "r")
pred_contents = [json.loads(line) for line in file]
done_pid = [sample['pid'] for sample in pred_contents]
else:
done_pid = []
ans_file = open(answers_file, "a")
for i, line in enumerate(tqdm(questions)):
idx = line['pid']
info = line['info']
if idx in done_pid:
continue
qs = create_one_query(
problem = info,
shot_num = 0,
shot_type = 'solution',
use_caption = False,
)
query = qs
if 'image' in info:
image_file = info["image"]
image = Image.open(os.path.join(args.image_folder, image_file))
if hasattr(model.config, 'image_size_aux'):
if not hasattr(image_processor, 'image_size_raw'):
image_processor.image_size_raw = image_processor.crop_size.copy()
image_processor.crop_size['height'] = model.config.image_size_aux
image_processor.crop_size['width'] = model.config.image_size_aux
image_processor.size['shortest_edge'] = model.config.image_size_aux
image_tensor = process_images([image], image_processor, model.config)[0]
image_grid = getattr(model.config, 'image_grid', 1)
if hasattr(model.config, 'image_size_aux'):
raw_shape = [image_processor.image_size_raw['height'] * image_grid,
image_processor.image_size_raw['width'] * image_grid]
image_tensor_aux = image_tensor
image_tensor = torch.nn.functional.interpolate(image_tensor[None],
size=raw_shape,
mode='bilinear',
align_corners=False)[0]
else:
image_tensor_aux = []
if image_grid >= 2:
raw_image = image_tensor.reshape(3,
image_grid,
image_processor.image_size_raw['height'],
image_grid,
image_processor.image_size_raw['width'])
raw_image = raw_image.permute(1, 3, 0, 2, 4)
raw_image = raw_image.reshape(-1, 3,
image_processor.image_size_raw['height'],
image_processor.image_size_raw['width'])
if getattr(model.config, 'image_global', False):
global_image = image_tensor
if len(global_image.shape) == 3:
global_image = global_image[None]
global_image = torch.nn.functional.interpolate(global_image,
size=[image_processor.image_size_raw['height'],
image_processor.image_size_raw['width']],
mode='bilinear',
align_corners=False)
# [image_crops, image_global]
raw_image = torch.cat([raw_image, global_image], dim=0)
image_tensor = raw_image.contiguous()
images = image_tensor[None].to(dtype=model.dtype, device='cuda', non_blocking=True)
images_aux = image_tensor_aux[None].to(dtype=model.dtype, device='cuda', non_blocking=True) if len(image_tensor_aux)>0 else None
if getattr(model.config, 'mm_use_im_start_end', False):
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
else:
images = None
images_aux = None
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
images_aux=images_aux,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=1024,
bos_token_id=tokenizer.bos_token_id, # Begin of sequence token
eos_token_id=terminators, # End of sequence token
pad_token_id=tokenizer.pad_token_id, # Pad token
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# print(tokenizer.batch_decode(output_ids)[0].strip())
del info['decoded_image']
info['query'] = query
info['response'] = outputs
ans_file.write(json.dumps(info) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v0")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--answer-prompter", action="store_true")
parser.add_argument('--load_8bit', type=bool, default=False)
parser.add_argument("--single-pred-prompt", action="store_true")
args = parser.parse_args()
eval_model(args) |