Spaces:
Runtime error
Runtime error
File size: 5,074 Bytes
0f14892 86cffc0 0f14892 86cffc0 910652f 86cffc0 a637de1 86cffc0 291ddd0 fa81ccd 86cffc0 359e303 43d70a9 86cffc0 8130fc5 86cffc0 fdacea4 bf5acef fdacea4 86cffc0 1d64fb8 86cffc0 b99ba25 86cffc0 9986a64 86cffc0 dd694ec baaa59a 86cffc0 8abdcd2 a637de1 86cffc0 f34e2ac ec4c4f7 86cffc0 95be3d0 f34e2ac f966a64 f34e2ac dd694ec 86cffc0 471412e 5774921 86cffc0 dd694ec 86cffc0 f966a64 86cffc0 f966a64 86cffc0 baaa59a 86cffc0 291ddd0 86cffc0 8abdcd2 86cffc0 9986a64 0f14892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from huggingface_hub import InferenceClient
import spaces
import os
import warnings
import shutil
import time
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoProcessor
from transformers import TextIteratorStreamer
import torch
from dc.model import *
from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from PIL import Image
from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
tokenizer = AutoTokenizer.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', low_cpu_mem_usage=True,torch_dtype=torch.float16)
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device='cuda', dtype=torch.float16)
image_processor = vision_tower.image_processor
model.to('cuda')
# model.generation_config.eos_token_id = 128009
tokenizer.unk_token = "<|reserved_special_token_0|>"
tokenizer.pad_token = tokenizer.unk_token
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
print('process end')
print('history', history)
conv = conv_templates['llama_3'].copy()
if len(history) == 0:
message['text'] = DEFAULT_IMAGE_TOKEN + '\n' + message['text']
else:
for idx, (user, assistant) in enumerate(history[1:]):
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
if idx == 0:
user = DEFAULT_IMAGE_TOKEN + '\n' + user
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], assistant)
conv.append_message(conv.roles[0], message['text'])
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
print(prompt)
image = Image.open(image).convert('RGB')
image_tensor = process_images([image], image_processor, model.config)[0]
inputs = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)
image_tensor = image_tensor.unsqueeze(0)
image_tensor = image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True)
inputs = inputs.to(device='cuda', non_blocking=True)
print('image', image_tensor.shape)
print('inputs', inputs.shape)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs=inputs, images=image_tensor, streamer=streamer, max_new_tokens=1024, do_sample=False, eos_token_id = terminators)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
print('here?')
thread.start()
print('start')
buffer = ""
# time.sleep(0.5)
for new_text in streamer:
print('new_text', new_text)
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
generated_text_without_prompt = buffer
# time.sleep(0.06)
yield generated_text_without_prompt
chatbot=gr.Chatbot(label=f"Chat with Dense Connector")
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="DenseConnector-v1.5-8B",
# examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
# {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [DenseConnector-v1.5-8B](https://huggingface.co/HuanjinYao/DenseConnector-v1.5-8B). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
gr.Image(label="Upload an image to start")
if __name__ == "__main__":
demo.launch() |