Spaces:
Starting
on
T4
Starting
on
T4
import torch | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from celle_taming_main import instantiate_from_config | |
from taming.modules.diffusionmodules.model import Encoder, Decoder | |
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
from taming.modules.vqvae.quantize import GumbelQuantize | |
from taming.modules.vqvae.quantize import EMAVectorQuantizer | |
class VQModel(pl.LightningModule): | |
def __init__( | |
self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
remap=None, | |
sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
): | |
super().__init__() | |
self.image_key = image_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.loss = instantiate_from_config(lossconfig) | |
self.quantize = VectorQuantizer( | |
n_embed, | |
embed_dim, | |
beta=0.25, | |
remap=remap, | |
sane_index_shape=sane_index_shape, | |
) | |
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
self.image_key = image_key | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels) == int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) | |
print(f"Restored from {path}") | |
def encode(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant) | |
return dec | |
def decode_code(self, code_b): | |
quant_b = self.quantize.embed_code(code_b) | |
dec = self.decode(quant_b) | |
return dec | |
def forward(self, input): | |
quant, diff, _ = self.encode(input) | |
dec = self.decode(quant) | |
return dec, diff | |
def get_input(self, batch, k): | |
if k == "mixed": | |
keys = ["nucleus", "target"] | |
index = torch.randint(low=0, high=2, size=(1,), dtype=int).item() | |
k = keys[index] | |
x = batch[k] | |
if len(x.shape) == 3: | |
x = x[..., None] | |
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
return x | |
def training_step(self, batch, batch_idx=None, optimizer_idx=0): | |
if type(batch) == dict: | |
x = self.get_input(batch, self.image_key) | |
else: | |
x = batch | |
xrec, qloss = self( | |
x, | |
) | |
if optimizer_idx == 0: | |
# autoencode | |
aeloss, log_dict_ae = self.loss( | |
qloss, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log( | |
"train/aeloss", | |
aeloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
self.log_dict( | |
log_dict_ae, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return aeloss | |
if optimizer_idx == 1: | |
# discriminator | |
discloss, log_dict_disc = self.loss( | |
qloss, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log( | |
"train/discloss", | |
discloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
self.log_dict( | |
log_dict_disc, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
if type(batch) == dict: | |
x = self.get_input(batch, self.image_key) | |
else: | |
x = batch | |
xrec, qloss = self(x) | |
aeloss, log_dict_ae = self.loss( | |
qloss, | |
x, | |
xrec, | |
0, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
discloss, log_dict_disc = self.loss( | |
qloss, | |
x, | |
xrec, | |
1, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
# rec_loss = log_dict_ae["val/rec_loss"] | |
# self.log( | |
# "val/rec_loss", | |
# rec_loss, | |
# prog_bar=True, | |
# logger=True, | |
# on_step=True, | |
# on_epoch=True, | |
# sync_dist=True, | |
# ) | |
# self.log( | |
# "val/aeloss", | |
# aeloss, | |
# prog_bar=True, | |
# logger=True, | |
# on_step=True, | |
# on_epoch=True, | |
# sync_dist=True, | |
# ) | |
for key, value in log_dict_disc.items(): | |
if key in log_dict_ae: | |
log_dict_ae[key].extend(value) | |
else: | |
log_dict_ae[key] = value | |
self.log_dict(log_dict_ae, sync_dist=True) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.quantize.parameters()) | |
+ list(self.quant_conv.parameters()) | |
+ list(self.post_quant_conv.parameters()), | |
lr=lr, | |
betas=(0.5, 0.9), | |
) | |
opt_disc = torch.optim.Adam( | |
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) | |
) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 | |
return x | |
class VQSegmentationModel(VQModel): | |
def __init__(self, n_labels, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1)) | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.quantize.parameters()) | |
+ list(self.quant_conv.parameters()) | |
+ list(self.post_quant_conv.parameters()), | |
lr=lr, | |
betas=(0.5, 0.9), | |
) | |
return opt_ae | |
def training_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train") | |
self.log_dict( | |
log_dict_ae, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return aeloss | |
def validation_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val") | |
self.log_dict( | |
log_dict_ae, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
total_loss = log_dict_ae["val/total_loss"] | |
self.log( | |
"val/total_loss", | |
total_loss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return aeloss | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
# convert logits to indices | |
xrec = torch.argmax(xrec, dim=1, keepdim=True) | |
xrec = F.one_hot(xrec, num_classes=x.shape[1]) | |
xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float() | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
return log | |
class VQNoDiscModel(VQModel): | |
def __init__( | |
self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
): | |
super().__init__( | |
ddconfig=ddconfig, | |
lossconfig=lossconfig, | |
n_embed=n_embed, | |
embed_dim=embed_dim, | |
ckpt_path=ckpt_path, | |
ignore_keys=ignore_keys, | |
image_key=image_key, | |
colorize_nlabels=colorize_nlabels, | |
) | |
def training_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
# autoencode | |
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train") | |
output = pl.TrainResult(minimize=aeloss) | |
output.log( | |
"train/aeloss", | |
aeloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
output.log_dict( | |
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True | |
) | |
return output | |
def validation_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val") | |
rec_loss = log_dict_ae["val/rec_loss"] | |
output = pl.EvalResult(checkpoint_on=rec_loss) | |
output.log( | |
"val/rec_loss", | |
rec_loss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
output.log( | |
"val/aeloss", | |
aeloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
output.log_dict(log_dict_ae) | |
return output | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.quantize.parameters()) | |
+ list(self.quant_conv.parameters()) | |
+ list(self.post_quant_conv.parameters()), | |
lr=self.learning_rate, | |
betas=(0.5, 0.9), | |
) | |
return optimizer | |
class GumbelVQ(VQModel): | |
def __init__( | |
self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
temperature_scheduler_config, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
kl_weight=1e-8, | |
remap=None, | |
): | |
z_channels = ddconfig["z_channels"] | |
super().__init__( | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=ignore_keys, | |
image_key=image_key, | |
colorize_nlabels=colorize_nlabels, | |
monitor=monitor, | |
) | |
self.loss.n_classes = n_embed | |
self.vocab_size = n_embed | |
self.quantize = GumbelQuantize( | |
z_channels, | |
embed_dim, | |
n_embed=n_embed, | |
kl_weight=kl_weight, | |
temp_init=1.0, | |
remap=remap, | |
) | |
self.temperature_scheduler = instantiate_from_config( | |
temperature_scheduler_config | |
) # annealing of temp | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
def temperature_scheduling(self): | |
self.quantize.temperature = self.temperature_scheduler(self.global_step) | |
def encode_to_prequant(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
return h | |
def decode_code(self, code_b): | |
raise NotImplementedError | |
def training_step(self, batch, batch_idx=None, optimizer_idx=0): | |
self.temperature_scheduling() | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
if optimizer_idx == 0: | |
# autoencode | |
aeloss, log_dict_ae = self.loss( | |
qloss, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log_dict( | |
log_dict_ae, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
self.log( | |
"temperature", | |
self.quantize.temperature, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return aeloss | |
if optimizer_idx == 1: | |
# discriminator | |
discloss, log_dict_disc = self.loss( | |
qloss, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log_dict( | |
log_dict_disc, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
xrec, qloss = self(x) | |
aeloss, log_dict_ae = self.loss( | |
qloss, | |
x, | |
xrec, | |
0, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
discloss, log_dict_disc = self.loss( | |
qloss, | |
x, | |
xrec, | |
1, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
rec_loss = log_dict_ae["val/rec_loss"] | |
self.log( | |
"val/rec_loss", | |
rec_loss, | |
prog_bar=True, | |
logger=True, | |
on_step=False, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
self.log( | |
"val/aeloss", | |
aeloss, | |
prog_bar=True, | |
logger=True, | |
on_step=False, | |
on_epoch=True, | |
sync_dist=True, | |
) | |
self.log_dict(log_dict_ae, sync_dist=True) | |
self.log_dict(log_dict_disc, sync_dist=True) | |
return self.log_dict | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
# encode | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
quant, _, _ = self.quantize(h) | |
# decode | |
x_rec = self.decode(quant) | |
log["inputs"] = x | |
log["reconstructions"] = x_rec | |
return log | |
class EMAVQ(VQModel): | |
def __init__( | |
self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
remap=None, | |
sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
): | |
super().__init__( | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=ignore_keys, | |
image_key=image_key, | |
colorize_nlabels=colorize_nlabels, | |
monitor=monitor, | |
) | |
self.quantize = EMAVectorQuantizer( | |
n_embed=n_embed, embedding_dim=embed_dim, beta=0.25, remap=remap | |
) | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
# Remove self.quantize from parameter list since it is updated via EMA | |
opt_ae = torch.optim.Adam( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.quant_conv.parameters()) | |
+ list(self.post_quant_conv.parameters()), | |
lr=lr, | |
betas=(0.5, 0.9), | |
) | |
opt_disc = torch.optim.Adam( | |
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) | |
) | |
return [opt_ae, opt_disc], [] | |