Howosn commited on
Commit
d9fc0db
·
verified ·
1 Parent(s): a796ee7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -4
app.py CHANGED
@@ -1,12 +1,23 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
-
 
 
 
 
 
 
 
 
 
 
 
5
  # Load the summarization & translation model pipeline
6
  #tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048')
7
- trans_pipe = pipeline("translation", model='liam168/trans-opus-mt-zh-en')
8
  sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
9
- #tokenizer = AutoTokenizer.from_pretrained('Howosn/Sentiment_Model', use_fast=False)
10
 
11
  # Streamlit application title
12
  st.title("Emotion analysis")
@@ -18,7 +29,7 @@ text = st.text_area("Enter the text", "")
18
  # Perform analysis result when the user clicks the "Analyse" button
19
  if st.button("Analyse"):
20
  # Perform text classification on the input text
21
- trans = trans_pipe(text)[0]
22
  results = sentiment_pipeline(trans)[0]
23
 
24
  # Display the classification result
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ def tras_sum(input):
5
+ model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
6
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
7
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
8
+ # text summary generate
9
+ prefix = 'summary to en: '
10
+ src_text = prefix + input
11
+ input_ids = tokenizer(src_text, return_tensors="pt")
12
+ generated_tokens = model.generate(**input_ids)
13
+ traslated_summary = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
14
+ return traslated_summary
15
+
16
  # Load the summarization & translation model pipeline
17
  #tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048')
18
+ #trans_pipe = pipeline("translation", model='liam168/trans-opus-mt-zh-en')
19
  sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
20
+
21
 
22
  # Streamlit application title
23
  st.title("Emotion analysis")
 
29
  # Perform analysis result when the user clicks the "Analyse" button
30
  if st.button("Analyse"):
31
  # Perform text classification on the input text
32
+ trans = tras_sum(text)[0]
33
  results = sentiment_pipeline(trans)[0]
34
 
35
  # Display the classification result