Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,23 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Load the summarization & translation model pipeline
|
| 6 |
#tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048')
|
| 7 |
-
trans_pipe = pipeline("translation", model='liam168/trans-opus-mt-zh-en')
|
| 8 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
| 9 |
-
|
| 10 |
|
| 11 |
# Streamlit application title
|
| 12 |
st.title("Emotion analysis")
|
|
@@ -18,7 +29,7 @@ text = st.text_area("Enter the text", "")
|
|
| 18 |
# Perform analysis result when the user clicks the "Analyse" button
|
| 19 |
if st.button("Analyse"):
|
| 20 |
# Perform text classification on the input text
|
| 21 |
-
trans =
|
| 22 |
results = sentiment_pipeline(trans)[0]
|
| 23 |
|
| 24 |
# Display the classification result
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
def tras_sum(input):
|
| 5 |
+
model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
| 6 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 7 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 8 |
+
# text summary generate
|
| 9 |
+
prefix = 'summary to en: '
|
| 10 |
+
src_text = prefix + input
|
| 11 |
+
input_ids = tokenizer(src_text, return_tensors="pt")
|
| 12 |
+
generated_tokens = model.generate(**input_ids)
|
| 13 |
+
traslated_summary = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
| 14 |
+
return traslated_summary
|
| 15 |
+
|
| 16 |
# Load the summarization & translation model pipeline
|
| 17 |
#tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048')
|
| 18 |
+
#trans_pipe = pipeline("translation", model='liam168/trans-opus-mt-zh-en')
|
| 19 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
| 20 |
+
|
| 21 |
|
| 22 |
# Streamlit application title
|
| 23 |
st.title("Emotion analysis")
|
|
|
|
| 29 |
# Perform analysis result when the user clicks the "Analyse" button
|
| 30 |
if st.button("Analyse"):
|
| 31 |
# Perform text classification on the input text
|
| 32 |
+
trans = tras_sum(text)[0]
|
| 33 |
results = sentiment_pipeline(trans)[0]
|
| 34 |
|
| 35 |
# Display the classification result
|