Hosasmek commited on
Commit
c0db850
·
verified ·
1 Parent(s): 954fe38

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. app.py +30 -0
  3. my_cnn_model.keras +3 -0
  4. requirements.txt +2 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ my_cnn_model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ st.title("Skin Cancer Image Classification")
7
+ st.write("Upload an image and let the model guess whether it is a cancer or not.")
8
+
9
+ model = load_model("my_cnn_model.keras")
10
+
11
+ def process_image(img):
12
+ img = img.resize((170,170)) # set the size as 170 x 170 pixel
13
+ img = np.array(img)
14
+ img = img / 255.0 # normalized
15
+ img = np.expand_dims(img, axis=0)
16
+ return img
17
+
18
+
19
+ file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
20
+
21
+ if file is not None:
22
+ img = Image.open(file)
23
+ st.image(img, caption="Uploaded Image")
24
+ image = process_image(img)
25
+
26
+ prediction = model.predict(image)
27
+ predicted_class = np.argmax(prediction)
28
+
29
+ class_names = ["It is NOT Cancer!", "It is Cancer!"]
30
+ st.write(class_names[predicted_class])
my_cnn_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9c7220d74b23b0acad9db9df93676548ff873445060d0c7283a471d9e8a6c5
3
+ size 165518887
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ streamlit
2
+ tensorflow